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a b s t r a c t

This paper investigates the impulsive stabilization problem of fractional differential systems (FDSs in
short). Both the global exponential stability and ultimate boundedness criteria are established using
Lyapunov functions, algebraic inequality techniques and boundedness of Mittag-Leffler functions. It is
shown that unstable and unbounded FDSs can be stable and bounded respectively under impulsive
control. Examples and simulations are also provided to demonstrate the effectiveness of the derived
theoretical results.
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1. Introduction

Fractional differential systems (FDSs in short) are the general-
izations of the classical integer order differential systems. In recent
years, FDSs have gained an increasing attention due to their po-
tential applications in various areas such as biology, rheology, vis-
coelasticity, electrochemistry, capacitor theory, control theory,
electrical networks, fluid dynamics, porous media, blood flow
phenomena, nonlinear oscillation of earthquake, etc. Many sig-
nificant contributions have been made in the theory of FDSs [1–14].

On the other hand, impulsive effect is one of the most familiar
phenomena in many evolution processes in which states exhibit
abrupt changes at certain moments, involving many fields such as
economics, mechanics, epidemic models, neural networks and
satellite communications, etc. In the past few decades, the quali-
tative and stability theory for different kinds of dynamical systems
with impulsive effects have been investigated deeply and widely,
and many important results have been achieved [15–20]. Recently,
great efforts have been devoted to extend the stability from im-
pulse-free FDSs to impulsive FDSs (IFDSs in short). Up to now,
many interesting results on IFDSs have been obtained [21–32].

Most of these results focus only on the stability and existence-
uniqueness but the study of boundedness problem of IFDSs is of
paramount importance since boundedness plays a key role in in-
vestigating the basic properties of solutions. Therefore, it is natural
that studies on IFDSs involve not only a discussion of the stability
and existence-uniqueness but also boundedness. Unfortunately,
little attention has been paid to the boundedness problem of
IFDSs. In [33], Xu et al. studied the global ultimate boundedness
problem of impulsive Caputo FDSs (ICFDSs in short) under the
condtion η Υ( ( )) ≤ ( ( )) +

−
D V t y t V t y t, ,t

C
t
q

k 1
( ∈ ( ]−t t t,k k1 ) with η < 0

and Υ ≥ 0. There is no doubt that the results would collapse if
η ≥ 0. Then a nature question aries: what are the boundedness
criteria for the case of η ≥ 0? In other words, what are the
boundedness criteria for IFDSs if the corresponding impulse-free
FDSs are unboundedness themselves? To the best of our knowl-
edge, there are no publications dealing with this problem, which
remains an interesting and challenging research topic. Therefore,
the issue constitutes the main motivation of this paper.

Summarizing the above discussions, our objective in this paper
is to discussed the boundednees problem of ICFDSs for the case
η ≥ 0, that is, to discuss the impulsive stabilization problem of
FDSs. Using Lyapunov functions, algebraic inequality techniques
and boundedness of Mittag-Leffler functions, both the global ex-
ponential stability and ultimate boundedness criteria are estab-
lished. It is shown that unstable and unbounded impulse-free FDSs
can be stable and bounded respectively under impulsive control.
Examples are also given to explain our results.
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2. Preliminaries

Let n denote the n-dimensional Euclidean space with norm
∥·∥,  ×n n denote the set of n�n-dimensional real matrices, +
denote the set of non-negative real numbers, + denote the set of
positive integers, and  = [ ∞)t ,t 00

. Let C   ( × )+,t
n

0
be the col-

lection of all piecewise continuous functions from  ×t
n

0
to +.

For a real symmetric matrix A, λ ( )Amax and λ ( )Amin denote the
maximum and the minimum eigenvalue of A, respectively. In the
following, we recall some definitions of fractional calculus in [6].

Gamma function Γ( )z :

∫Γ( ) = ( ) >
∞

− −z e t dt z, Re 0t z

0

1

where ( )zRe denotes the real part of the complex number z.
The Caputo fractional derivative is defined as

∫Γ
( ) =

( − )
( )

( − )
− < <

( )

( )

+ −D y t
n q

y s

t s
ds n q n

1
, 1 .

1
t
C

t
q

t

t n

q n10
0

The one-parameter and two-parameter Mittag-Leffler functions
are defined as, respectively

∑
Γ α

α( ) =
( + )

( > )
( )

α
=

∞

E z
z

k 1
, 0 ,

2k

k

0

∑
Γ α β

α β( ) =
( + )

( > > )
( )

α β
=

∞

E z
z

k
, 0, 0 .

3k

k

,
0

Obviously, ( ) = ( )α αE z E z,1 .
Consider the following IFDSs:

⎧
⎨
⎪⎪

⎩
⎪⎪

( ) = ( ) + ( ( )) ≠ ≥

Δ ( ) = ( ) − ( ) = ( ( ))
( ) = ( )
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0
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0

where ∈ ( )q 0, 1 , ∈ ×A n n,  [ ∞) × →f t: , n n
0 , ( ) = ( + ϵ)+

ϵ→ +y t y tlimk k0 ,
( ) = ( + ϵ)−

ϵ→ −y t y tlimk k0 ,  →I :k
n n, and the impulsive moments

( ∈ )+t kk are a strictly increasing sequence which satisfies
= ∞→∞tlimk k .

Throughout this paper, we assume that for any given ∈y n
0 ,

there exits at least one solution y(t) of (4), which is left continuous
at each tk, i.e. ( ) = ( )−y t y tk k . One may refer to [21,26,31], for the
results on the existence and uniqueness of the solution of IFDSs.

Lemma 2.1. [6] If α< <0 2, β is an arbitrary real number, ζ is such
that ζ π πα< < { }πα min ,

2
and C C,1 2 are real constants, then

⎜ ⎟⎛
⎝

⎞
⎠( ) ζ| ( )| ≤ ( + | |) +

+ | |
(| ( )| ≤ ) | | ≥α β

β
α α
−

E z C z z
C

z
z z1 exp Re

1
, arg , 0., 1

1 1 2

Remark 2.1. Using Lemma 2.1 and the nonnegativity of
η( ( − ) )−E t tq i i

q
1 and η( ( − ) )+ −E t tq q i i

q
, 1 1 , we have there exist positive

constants ϑ1,ϑ2,ϑ3 and ϑ4 such that

⎜ ⎟⎛
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Lemma 2.2. Suppose that there exists a function
C   ( ) ∈ ( × )+V t y, ,t

n1,2
0

and several constants Υ ≥ 0, μ > 0k , and
η ≥ 0 such that.

( )1 for all ∈ +k and ∈y n,

μ( ( )) ≤ ( ( )) ( )+ +V t y t V t y t, , ; 7k k k k k

( )2 for all < ≤−t t tk k1 , ∈ +k , and ∈y n,

η Υ( ( )) ≤ ( ( )) + ( )−
D V t y t V t y t, , . 8t

C
t
q

k 1

Then all solutions of (4) satisfy the following estimate

{ }
( ) ( )

( ) ( ) ( )
( ) ( ) ( )
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( )

Π μ ηθ η
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where θ< = − < ∞−t t0 i i i 1 and Π (·) == 1i i1
0 , ∑ (·) = ∑ (·) ==

−
= 0j i j i1

1
1

0 .

Proof. The proof of Lemma 2.2 is similar to that of Inequality (22)
in [33].

Lemma 2.3. ([11])Let ( ) ∈y t n be a vector of differentiable function.
Then for any time constant ≥t t0, the following relationship holds

 ( ( ) ( )) ≤ ( ) ( ) ( )D y t y t y t D y t2 , 10t
C

t
q T T

t
C

t
q

0 0

where ∈ ( )q 0, 1 ,  ∈ ×n n is a constant, symmetric and positive
definite matrix.

Lemma 2.4. ([34]) Let ∈ ×X n n be a positive definite matrix and
∈ ×Q n n a symmetric matrix. Then for any ∈y n, the following

inequality holds

λ λ( )· ≤ ≤ ( )− −X Q y Xy y Qy X Q y Xy.T T T
min

1
max

1

3. Main results

Theorem 3.1. Assume that there exists a function
C   ( ) ∈ ( × )+V t y, ,t

n
0

and several constants Υ ≥ 0, μ > 0k , >c 01 ,
>c 02 and η ≥ 0 such that.

( )i for all  ( ) ∈ ×t y, t
n

0
,

∥ ∥ ≤ ( ) ≤ ∥ ∥ ( )c y V t y c y, ; 111
2

2
2

( )ii for all ∈ +k and ∈y n,

μ( ( )) ≤ ( ( )) ( )+ +V t y t V t y t, , ; 12k k k k k

( )iii for all < ≤−t t tk k1 , ∈ +k , and ∈y n,

η Υ( ( )) ≤ ( ( )) + ( )−
D V t y t V t y t, , ; 13t

C
t
q

k 1

θ( ) < = − < ∞−iv t t0 k k k 1 , ∈ +k ,

⎛
⎝⎜

⎞
⎠⎟μ

ηθ
ϑ +

ϑ
+

<
( )

ηe
1

1,
14

h
q1

2q
1

where


θ= { }∈ +
h supk k ,


μ μ= { }∈ +

supk k and θ θ= { }∈ +
infk k . Then
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