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a b s t r a c t

The Subspace Pursuit (SP) algorithm is one of greedy pursuit methods which is used to reconstruct of
K-sparse signal. Unlike existing condition produced by Dai and Milenkovic in 2004 that suggests the
residual value of current iteration is reduced from the previous iteration, our approach eliminates useless
information by reducing the number of iterations used to detect the correct support set. This operation is
done by suggesting a new halting condition that can capture the best support set which can give the best
representation of the reconstructed signal. The new halting conditions enhanced the SP algorithm to low
computational complexity and reconstruction accuracy of the sparse signal.

A mathematically proven for two halt condition: noiseless setting, and noisy setting for signal af-
fected by Gaussian noise. An error bound relation also is driven.

In this paper, we try also to relax the restricted isometry constant RIC value to narrows the gap
between the known bounds and ultimate performance, which it produced by Dai.

Simulation results show that the new halting condition can overpass best results produce by earlier
iteration and rise time consume. Our new halting condition can catch this earlier iteration and enhanced
SP algorithm results.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The motivation of this paper is to improve the SP algorithm by
modifying the halting condition suggested by Dia. In each itera-
tion, this new condition tries to keep track of an estimated support
consisting of K elements (non-zero sparse input) by removing and
adding elect elements from and to the candidate set, while still
ensuring that the overall computational complexity remains
competitive with old SP. Reducing the number of iteration process
leads to reduce the time needed to collect the necessary data and
these play a very important role in some areas, especially in the
medical field when using the MRI device, where gathering im-
portant information in slight time is the aspirations of the modern
science.

In 2004 E. J. Candes, T. Tao, and David L. Donoho has introduced
the Compressed Sensing (CS) theory, since then it becomes an
increasingly fast emerging research field [1]. The challenge in CS is
to reconstruct this sparse signal from few measurements as pos-
sible as it could.

CS attracted much interest in the research community and
found wide-ranging applications such as in astronomy [2], com-
munications [3], image and video processing [4], biology [5],
medicine [6,7], and radar [8].

The term “single pixel camera” [6]: that first developed at Rice
University was the best known device for compressive sensing.
Compressive Sensing Microarray (CSM) is one of microarray se-
quencing method that is considered as new device used for DNA
identification of organisms [5].

CS differs from classical sampling in two important aspects;
first it differs when the signal at a specific point in time, and CS
acquires measurement by using inner products between the signal
and more general test function. The randomness always plays a
role in design models of the CS [9].Secondly, the big deal here is
how to recover the original signal from the compression mea-
surements. The standard CS theorem is based on a sparse signal
model and uses an undetermined system of linear equations [10].

Many signals are usually sparse or compressible on some basis
such as images or audio signal. Even though the signal is sparse, it
is insignificant action to reconstruct original signals from com-
pacted readings, as long as we couldn’t know the location of the
non-zero coefficient of that vector.

For a large sparse signal hopefully, it is recovered correctly and
precisely by fewer numbers of measurements as much as possible.
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In spite of the fact that this appears to be conceivable in theory,
the difficulty is in assembling calculations to performing the pre-
cision and efficiency of reconstructing.

Several low complexity reconstruction methods are used nowa-
days as a recovery method. Some of these include Convex Optimi-
zation: like Basis Pursuit (BP) and Basis Pursuit De-Noising (BPDN),
Iterative Greedy Algorithms like Matching Pursuit (MP), Orthogonal
Matching Pursuit (OMP) [11], the Regularized OMP (ROMP), and
Compressive Sampling Matching Pursuit (CoSaMP) [12].

The simple idea behind the use of a greedy method is to find
the support for an unknown signal sequentially. The support set
contains indices of non-zero elements of a sparse vector.

In [10] and [13] Wei Dai and Milenkovic proposed a new greedy
algorithm for recovering a sparse signal, this method called subspace
pursuit. The RIP for SP has been investigated in [13]. This algorithm
allowing for exact and approximate signal reconstructed, and can
work for noiseless and noisy case respectively.

SP algorithm combines a simple method for re-evaluating the
reliability of all candidates at each iteration of the process.

The basic idea behind the SP method depends upon the *A
order statistic algorithm.

Dai adopt in his suggested algorithm a stopping criterion
≥ −r rj j 1 which describe that when the previous residual is less

than the current residual, the iteration is halted and the current
support is equal to original support set [10].

An obvious drawback of SP is that there is no guarantee of the
overall reconstruction quality of the support sets. In particular,
since the SP method depend on one condition for terminate the
iteration, there is no guarantee that the residual error due to r j is
lower than that due to −r j 1.

The central issue facing the decoding operation for the signal
recovering performance, is choosing the right step that give a
reasonable measurements produce from the product of an ortho-
gonal projection matrix and the random sensing matrix, and this
can be done by denoting the right halting condition that produces
a recovering support set which has a converges value compare to
original one. Based on the developed analysis in this paper, we
derive a more accurate stopping condition as it compared to the
one produce by Dai and Milenkovic [10,13].

By using our proposed halting conditions, we can guarantee
perfect and stable signal recovering. The requirement on the RIC of

the sensing matrix Φ can be relaxed to δ <+
+ +

+K
K K

K1
1

2 1
. Specifi-

cally, assuming that the sensing matrixΦ satisfies RIP of order K3 ,
we can show that δ K3 guarantee exact and stable support identi-
fication via SP in the noiseless case (and approximately in noisy
case). Once the correct support set is determined, the non-zero
coefficients are calculated using pseudoinversion process. Our
target, thus improves the results in [10] and [13].

A lot of theories were suggested in this field depend on SP stopping
condition, so the major challenge we faced here is to find a convincing
mathematical expression which is superior to the previous one, and
provide accurate and stable performance with existing and absence of
noise.

The limitation of our new suggestion halting condition is the
same drawback as the old condition of ordinary SP method, which
is, if the measurement rate is very low, the performance is not
overcome the old greedy methods such as CoSaMP method, the SP
method showing it’s best performance when the measurement
rate reaching somewhat a good value. Actually we cannot consider
this as drawback because even the old greedy methods show
better reading, but it’s still unacceptable results. This feature can
be observed in detail at the simulation results section.

To declare the standard CS problem, which achieves a signal
∈x ,N which has a −K sparse input; the linear measurements

= Φy x

Where Φ∈ ×M N represents a random measurement (sensing) ma-
trix, and ∈y M represents the compressed measurement signal [14].

Iterative greedy depends on its search method upon an esti-
mation of the implicit support set of a sparse vector [15].

A new compressed sensing noiseless and noisy signal re-
construction based on derived new stopping condition based on
the greedy algorithm is introduced in this paper. The new pro-
posed theory has less computational complexity and faster than
the old SP greedy algorithm.

The sensing matrix Φ is said to satisfy RIP of order K [16] if
δ< <0 1K such that

( )δ δ− ≤ Φ ≤( + )x x1 x 1K K2
2

2
2

2
2

Which it hold for all −K sparseX . The value δK is called re-
stricted isometry constant (RIC) of the sensing matrix Φ.

If the measurements corrupted by some noise ( )n , then the
measurement vector y can be represented as

= Φ +y x n

where ∈n M represents the additive white Gaussian noise
(AWGN) which have zero mean and variance σ2 [17].

In the presence of noise measurement, different algorithms
have been developed to approximate the original signal, suppose
some signal parameters and certain noise are known [18].

The RIP for SP has been investigated by Wei Dai and Milenkovic
in [13]. By studying the proposed approach of [10,13], we show in
this paper that to guarantee stable signal reconstruction via the SP
method, a new stopping condition can be achieved and the re-
quirement of the RIC for sensing matrix can be relaxed further. Our
bound improves the results in [10]: for the absence of noise, the
RIC value was δ <0.165K3 ; and for noisy case δ <0.083K3 .

1.1. Notation

We use Φ ∈ ×m N to denote the sensing matrix where <<N . For
∈x N is the original input sparse signal having a length equal to N,

and ∈xT
T denotes the vector whose entries consists of those of x

indexed by T . In this paper K denote sparse vector, ∈y M is the
measurement vector, ΦT denotes submatrix of Φ with the element
columns chosen from the ordered set T. Also Tk denote the support
set of the current iteration while −Tk 1 denote the support sets which
had been calculated in the previous iteration, yr

k is the residual of the
current iteration, yp is the projection residue, and ̂§¹T Ta1 2 is re-
presented the element set found in T1 but not in T2 . We use I to
denote the cardinality set, and ()* stands for the transpose operation,
X represent the ℓ2-norm , Φ† is the moore-penrose pseudo inverse
of matrix Φ. We write ̃ ∈xs

N to denote the zero padded for xs. I is
the identity matrix of a proper dimension.

2. New RIC value vs old value

Mo and Shen [19], suppose the upper bound on δ +K 1 can further

relax to δ <+ +K K1
1

1
. Ling-Hua and Jwo-Yuh [17] relax the upper

bound to + −K
K

4 1 1
2

trying to narrows the gap between known
bound and conjecture made by Wang and Shim [20] which is
equal to δ <+K K1

1

This paper shows that the upper bound on δ +K 1 in the re-
construction condition can be improved

δ < + +
+ ( )+

K 1 K
2K 1 1K 1
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