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a b s t r a c t

In recent years, multivariate statistical monitoring of batch processes has become a popular research
topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty
variables contributing most to the detected process abnormality. Although contribution plots have been
commonly used in statistical fault isolation, such methods suffer from the smearing effect between
correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-
correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a
problem, a variable selection-based fault isolation method is proposed in this research, which transforms
the fault isolation problem into a variable selection problem in partial least squares discriminant analysis
and solves it by calculating a sparse partial least squares model. As different from the traditional
methods, the proposed method emphasizes the relative importance of each process variable. Such in-
formation may help process engineers in conducting root-cause diagnosis.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In industrial manufacturing, batch processes have been widely
used for producing low-volume and high-value-added products.
For ensuring safe and efficient operation of such processes, various
types of multivariate statistical process monitoring (MSPM)
methods have been developed [1], among which multiway prin-
cipal component analysis (MPCA) [2,3] is the most famous. Most of
these methods focus on fault detection, while the issue of multi-
variate fault isolation has been discussed less frequently. Here,
fault isolation is defined as identifying critical process variables
contributing most to the detected process abnormality, which is
the subsequent step of fault detection. In the literature, this step is
also called fault diagnosis or fault identification. Since the latter
two phrases have different meanings in different contexts, “fault
isolation” is used in this paper.

Contribution plots are the most commonly used method of
fault isolation, which can be applied to both continuous and batch
processes [4]. Contribution plots calculate the contributions of
different process variables to the monitoring statistic, and com-
pare them with the corresponding control limits derived from the
normal operation data. The interpretation of contribution plots is
straightforward: the variables with contributions outside the

control limits are regarded as faulty. However, the statistical basis
of control limits calculation in contribution plots is debatable [5].
Although in normal operation the contributions of process vari-
ables follow a certain distribution, this does not necessarily mean
that the contributions of non-faulty variables follow the same
distribution when a fault occurs to the process, because of the
correlations among variables. As a result, contribution plots often
suffer from the smearing effect [6], i.e., the influence of faulty
variables on the contributions of non-faulty variables, making the
isolation results misleading. Such an effect may be more sig-
nificant when contribution plots are applied to analyzing batch
process data, due to the high autocorrelations and cross-correla-
tions existing in variable trajectories within each batch. Other
popular statistical isolation methods include reconstruction ana-
lysis [7,8] and its extension using branch-and-bound (B&B) search
[9,10]. Usually, reconstruction analysis requires that the candidate
fault directions are known or abundant historical fault data are
available to estimate the fault directions. However, such require-
ments are unlikely to be fulfilled in real industrial applications.
The utilization of B&B overcomes such problem with the price of
heavy computations. In particular, the large number of expanded
variables used in batch process monitoring may make the search
more time-consuming.

In recent years, the utilization of the variable selection ap-
proaches, such as the least absolute shrinkage and selection
operators (LASSO) [11] and elastic net (EN) [12], have been
extended from regression modeling [13,14] to multivariate
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fault isolation [15,16]. In [17], the fault isolation problem is
transformed into a variable selection problem in discriminant
analysis, which can be solved efficiently using LASSO. Never-
theless, such a method is not applicable in dealing with batch
process data. The reasons are of twofold. First, supposing that
the dataset contains n observations and p variables, LASSO
selects at most n predictors when <n p. In batch processes, it is
common that there are more expanded variables than ob-
servations (i.e., batches). Therefore, LASSO may not provide
correct results. Second, if there exist groups of highly corre-
lated predictors, LASSO tends to select an arbitrary one from
each group, which means that LASSO may not identify all faulty
variables. Using EN instead of LASSO in variable selection may
solve the problem partially [17]. However, a comparative study
[18] has pointed out that sparse partial least squares (SPLS)
[19] outperforms EN. In the case study in [18], EN selects a
larger number of correlated variables.

In this research, a multivariate fault isolation method that is
particularly useful for batch process data analysis is developed
based on SPLS. Instead of giving a single suggestion on the set
of faulty variables, the proposed method emphasizes the re-
lative importance of each process variable by ranking the
process variables based on their extent of influence on the
fault. The organization of the rest of this paper is as follows. In
Section 2, the link between fault isolation and SPLS-based
discriminant analysis is revealed, based on which an SPLS-
based fault isolation method is proposed. Then, in Section 3,
the effectiveness of the proposed method is illustrated using
an injection molding process, through the comparison with the
traditional contribution plots and partial least squares dis-
criminant analysis (PLS-DA). Finally, Section 4 concludes the
paper with a summary.

2. Methodology

2.1. Link between fault isolation and SPLS-based discriminant
analysis

The objective of multivariate fault isolation is to identify vari-
ables critical to the process abnormality already detected. Con-
sidering the normal operation data as from one class and the fault
data as belonging to the other class, the variables to isolate are
those discriminating these two classes. Hence, the task of fault
isolation is equivalent to conducting variable selection in a two-
class discriminant problem.

In discriminant analysis, PLS-DA is a promising method [20].
Compared with the traditional linear discriminant analysis
method, such as Fisher discriminant analysis (FDA) [21], PLS-
DA is better suited to the cases that the number of observations
is smaller than the number of predictor variables, i.e., <n p,
since it avoids the singular problem in matrix inversion by
dimension reduction.

As is well known, PLS-DA is a variant of partial least squares
(PLS) when the response is categorical. Consequently, the variable
selection techniques developed for PLS can also be used in PLS-
DA-based fault isolation. In the field of variable selection, recent
developments, e.g., [11,12], are focusing increasingly on imposing
sparsity in the midst of the regression model building step. In
doing so, parameter estimation and variable selection are achieved
simultaneously. SPLS [19] is one such method, which accomplishes
variable selection at the same time of dimension reduction.
Therefore, such a method is considered in this research.

2.2. Sparse partial least squares

PLS [22] is a well-known dimension reduction technique
serving as an alternative to ordinary least squares (OLS) for
solving ill-conditioned linear regression problems. The core of
PLS is to transform the original predictors into a small number
of orthogonal latent variables which maximize the covariance
information between the inputs and the outputs. The latent
structure of PLS is as follows:

= + ( )X TP E, 1T

= + ( )Y TQ F, 2T

where ∈ ×RX n p is the predictor matrix, ∈ ×RY n q is the response
matrix, ∈ ×RT n K is the score matrix representing K linear
combinations of the original predictors, ∈ ×RP p K and ∈ ×RQ q K

are the loading matrices containing coefficients, and ∈ ×RE n p

and ∈ ×RF n q are the residual matrices composed of random
errors. To specify the score matrix =T XW, PLS calculates the
columns of the weighting matrix = ( ⋯ )W w w w, , , K1 2 projecting
X to T by solving a number of successive optimization pro-
blems. The objective function for calculating the first weight-
ing vector w1 is formulated as follows:

( ) = ( )w X YY Xw w wmax subject to 1. 3
T T T T

w

As seen in (3), the projection directions sought by PLS not only
relate X to Y , but also capture the most variation information in
the X space. PLS has been widely applied in process monitoring
[23–26] and soft sensor development [27–30], because of its good
mathematical properties.

Although PLS is a popular way for dealing with ill-condi-
tioned regression problems, it does not automatically lead to
the selection of relevant predictors. Instead, the weighting
vectors represent linear combinations of all original predictor
variables. As shown in the literature [19], the asymptotic con-
sistency of the PLS estimator does not hold with the very large
p and small n paradigm. Therefore, it is necessary to impose
sparsity in the optimization step for simultaneous regression
modeling and variable selection. SPLS was proposed as a
response to such a requirement [19].

In SPLS, the objective function for calculating the first weight-
ing vector is modified as follows:
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where c is an estimate of w , the L1 penalty introduces sparsity to c,
and the L2 penalty addresses the potential singularity in X YY XT T

when solving for c. After solving this optimization problem, c is
rescaled to have norm 1 and then used as the estimated weighting
vector instead of w .

In (4), the value of λ controls the sparsity of c. More specifically,
a larger λ results in more zero entries in c, and a smaller λ makes c
less sparse and involves more variables in the regression model.

2.3. SPLS-based multivariate fault isolation

In [20], the utilization of PLS is extended from regression
analysis to discriminant analysis by finding projection direc-
tions that focus on class separation. Such an application is
called PLS-DA. Based on a similar idea, SPLS can also be im-
plemented for classification. Moreover, owing to the variable
selection property of SPLS, the most relevant variables for
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