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For industrial processes, the state estimation plays a key role in various applications, such as process
monitoring and model based control. Although the particle filter (PF) is able to deal with nonlinear and
non-Gaussian processes, it rarely considers the influence of measurements with gross errors, such as
outliers, biases and drifts. Nevertheless, measurements of dynamical systems are often influenced by
different types of gross errors. This paper proposes a robust PF approach, in which gross error identifi-
cation is used to estimate magnitudes of gross error. The gross errors can be removed or compensated so
that a feasible set of particle sampling can contain the true states of the system. The proposed robust PF
approach is implemented on a complex nonlinear dynamic system, the free radical polymerization of
styrene. The application results show that the proposed approach is an appealing alternative to solving
PF estimation problems with measurements containing gross errors.

© 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In today's competitive process industries, there is intense
pressure to improve the performance of process facilities. How-
ever, due to various causes such as sensor reading errors, sensor
failures, and sensor unavailability, real-time information about
critical process variables is often unavailable. In such cases, ex-
tracting useful hidden variable information using measured vari-
ables and process models becomes more and more important to
sustain plant safety, productivity and profitability. The ideal ap-
proach to estimating the unobserved states of a dynamic system
with a given noisy observation of the process can be considered as
an optimal filtering problem within a Bayesian framework. As the
core of the state estimation tools, filters have been developed from
frequency domain to time domain, from non-recursion to recur-
sion, and from non-stationary random process to the state space
model. Nowadays, there are several filter techniques for state es-
timation, such as Kalman filter (KF), extended KF (EKF), unscented
KF (UKF) and particle filter (PF).

KF was first described and partially developed in technical
papers by Kalman [1,2]. The algorithm keeps track of the esti-
mated state of the system and the variance or uncertainty of the
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estimate. The estimate is updated using a state transition model
and measurements. Jazwinski proposed EKF by extending the use
of KF to nonlinear dynamic systems [3]. EKF assumes a Gaussian
posterior density and adopts the first-order Taylor series expan-
sion to provide a local approximation for the current state. UKF
uses a series of determined samples to approximate the posteriori
probability density of the state, and it has a good tracking per-
formance for any nonlinear system in the Gaussian environment
[4]. still, the above methods have some limitations. KF is limited to
the linear systems with Gaussian noise. EKF relies on linearization.
The accuracy of estimates and the tuning of EKF strongly depend
on the accuracy of linearization. Thus, EKF is not suitable for the
highly nonlinear system. UKF improves the accuracy of EKF and
provides significant improvements over EKF estimates, but it is
still limited to the assumption of Gaussian noise.

During the past decade, given a series of related observations,
the PF technique has become a popular signal processing tool for
problems that involve nonlinear tracking of an unobserved signal
of interest [5-8]. PF is a class of Monte Carlo simulation-based
filtering methods for nonlinear/non-Gaussian systems, leading to
computational intractability of traditional methods. It does not
assume a fixed shape of any probability density; instead, it ap-
proximates the conditional density by a finite number of particles/
samples and let these particles propagate in a certain way to mi-
mic the evolution of the conditional density. The approximated
conditional density converges to the true conditional density as
the number of particles increases to infinity. Because PF can
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capture the time-varying nature of distributions in nonlinear dy-
namic systems; PF has been widely used for state estimation in
many fields recently.

Chen et al. used PF for dynamic data reconciliation and process
change detection [9]. They also applied PF and the kernel
smoothing method on-line for state and parameter estimation in a
highly non-linear batch process [10]. Rigatos applied PF and KF for
state estimation and control of DC motors, and pointed out that PF
could succeed in accurately estimating the motor's state vector,
but at the same time it required higher computational effort [11].
Lopez-Negrete et al. used the constrained PF approach to ap-
proximate the arrival cost in moving horizon estimation, and ap-
plied the method in the continuously stirred tank reactor and the
constrained batch reactor process in order to estimate the un-
measured states accurately [12]. Dou and Li used interactive
multiple model and PF for robust visual tracking [13]. Ding et al.
used PF framework with local structural manifold learning for
object tracking [14]. Havangi proposed a robust evolutionary PF,
which did not require prior knowledge about the system [15]. Yin
and Zhu proposed an intelligent PF for state estimation and fault
detection of nonlinear systems. The intelligent PF is derived from
the genetic algorithm to further improve the particle diversity
[16]. A construction method for a state feedback control system
using PF as an observer for probabilistic state estimation was de-
scribed and verified experimentally by Nishida [17]. SveCko et al.
(2015) presented a PF algorithm for distance estimation using
multiple antennas on the receiver's side and only one transmitter,
where a received signal strength indicator of radio frequency was
used [18]. Most of those approaches specifically focused on state
estimation and/or parameter estimation. They do not explicitly
consider the rectification of measurements which may be affected
by gross errors.

Most of the PF based methods presume that the corrupted
measurements are free of gross errors or, more specifically, that
the measurements only contain zero-mean random noise so that
good state estimation can be derived. Nevertheless, measurements
often suffer from sudden large disturbances (outliers), systematic
significant biases or slow drifts. If measurements with those types
of gross errors are used for state estimation, the performance of
the PF based methods would be significantly degraded. The mea-
surements with gross errors should not be treated in the same way
as the regular measurements [19].

Only a few studies [7,9,19,20] discussed how to treat the
measurements with gross errors in a particular way to improve
the performance of PF. Zhang & Chen (2014) proposed a novel PF
algorithm based on the measurement test to solve the dynamic
simultaneous data reconciliation and gross error detection pro-
blem. When there are outliers in the measurements, PF can also
effectively solve the data reconciliation and gross error detection
problem to derive accurate estimated states and reconciled mea-
surements in the nonlinear dynamic process systems [19]. Other
researchers also considered the presence of outliers in the mea-
surements and proposed strategies to detect and decrease the
influence of outliers on the results of state estimation [7,9].
However, if the gross errors are constantly present in the mea-
surements, such as drifts and systematic biases, those gross errors
will lead to the degeneration of the filter. Zhao et al. (2014) pro-
posed a constrained PF approach to state estimation, which in-
volved three alternative strategies to impose the constraints on the
prior particles, posterior particles, and state estimation. The
method made a balance between the prior and the likelihood
functions by adjusting the weights of the violated and the valid
particles, respectively [21]. They also applied PF to state estimation
in batch processes based on a two-dimensional state-space model
[22]. Du et al. proposed a novel PF algorithm for target tracking in
the presence of glint noise based on observation noise modeling

[23]. Anwar et al. mentioned that the PCA based blind attack
modeling cannot be guaranteed if the measurement data contains
any gross errors. They proposed a technique based on sparse op-
timization that can overcome this limitation by separating the
gross errors from the measurement matrix [24]. Based on cas-
caded Kalman-Particle Filtering, Nargess et al. proposed a gyro-
scope drift and robot attitude estimation method and applied it to
a 3D camera system [20]. However, they only considered one type
of gross error without simultaneously considering different types
of gross errors, such as outliers, systematic biases, and drifts.

The challenges of considering different types of gross errors in
PF based state estimation are how to model each type of gross
error, how to identify and estimate gross errors (especially the
biases and drifts) and how to compensate the measurements in
the procedures of PF algorithms. To solve the problem of con-
sidering different types of gross errors and to enhance the per-
formance of PF, the objectives of this work are

(1) to construct the general model structure with different types
of gross errors;

(2) to develop the identification and estimation scheme of gross
errors from the corrupted measurements;

(3) to combine the estimated gross errors with PF to make a ro-
bust PF algorithm that can handle measurements in the ap-
plications with different types of gross errors.

The rest of the paper is organized as follows. The preliminary of
the generic PF for state estimation is briefly reviewed in the next
section. The formulations of measurements with random errors as
well as various types of gross errors are presented in Section 3. In
Section 4, the robust PF scheme, including gross error identifica-
tion and measurement compensation, is proposed to improve
particle sampling. Considering different types of gross errors in
measurements in the case study for free radical polymerization of
styrene, the effectiveness and the advantages of the proposed
robust PF for state estimation are demonstrated in Section 5. Fi-
nally, in Section 6, conclusions and future works are discussed.

2. Preliminary of PF for state estimation

A typical dynamic process system with the state dynamics and
the measurement equations is given by

Xy = f(xk—]v We_q) + Vg ¢))

z; = h(x,, wy) + w; 2)

where x, € R™ is the vector of states to be estimated and k de-
notes the time step. N, is the dimension of the vector of states.
f: R™ — RM is the nonlinear transition function, which defines the
evolution of the vector of states as a first-order Markov process.
h: R™ - R™ is the measurement function, which defines the re-
lationship between the vector of states x;, and the vector of
measurements z, € R™>. N, is the dimension of the vector of
measurements. u, is the vector of inputs. v,_; € R™ and w, € R™
are the white noise sequences for the process states and mea-
surements. They are independently and identically distributed
according to the probability density functions (PDFs) p, and, p,,
respectively. The PDFs p, and p, are usually assumed to be
Gaussian; i.e. v,_~G(v,_y; 0, ¥) and w,~G(w,; 0, ), where ¥ and
are the covariance matrices.

The system defined by Egs. (1) and (2) can then be alternatively
presented in a probabilistic form
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