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a b s t r a c t

Different alarm thresholds could generate different alarm data, resulting in different correlations. A new
multivariate alarm thresholds optimization methodology based on the correlation consistency between
process data and alarm data is proposed in this paper. The interpretative structural modeling is adopted
to select the key variables. For the key variables, the correlation coefficients of process data are calculated
by the Pearson correlation analysis, while the correlation coefficients of alarm data are calculated by
kernel density estimation. To ensure the correlation consistency, the objective function is established as
the sum of the absolute differences between these two types of correlations. The optimal thresholds are
obtained using particle swarm optimization algorithm. Case study of Tennessee Eastman process is given
to demonstrate the effectiveness of proposed method.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The distributed control system is widely used in modern
industries to monitor and control the processes, in which the
alarm systems play an essential role. The vitally important aspect
of alarm systems is to ensure the safety of environment, equip-
ment and personnel. In alarm systems, almost all variables are
configured with high and low alarms, especially some key vari-
ables with the four kinds of alarms: the high alarms, the low
alarms, the high-high alarms and the low-low alarms. If one
variable exceeds the configured alarm limit, an alarm occurs and
reminds the operators to take proper actions to avoid hazardous
events. There is no question that the growing integration and
complexity of the industry process have put higher requirements
on alarm systems and operators. One of the major problems in the
alarm systems is the alarm flooding, which distracts the operators’
attention and thus increases the probability of accidents. The HSE
(Health and Safety Executive) points out that the problems in
alarm systems have led to many financial loss or damage of
environment and equipment [1], such as the explosion and fire at
the Milford of Haven Refinery in the UK and the fire at the Eng-
land–France Channel Tunnel. With the guidance of the ISA

(International Society of Automation) 18.2 [2] and the EEMUA
(Engineering Equipment & Materials User's Association) [3], the
alarm management has drawn a lot of attention recently.

It is obvious that the alarm thresholds directly affect the quality
of the generated alarms. An improper alarm threshold is normally
the main reason of false alarms and missed alarms. The relationship
among the alarm thresholds, the false alarm rate and the missed
alarm rate can be visualized by Receiver Operating Characteristic
(ROC) curve [4]. Theoretically, for a process variable, its best alarm
limit refers to the value that makes both false alarm rate and missed
alarm rate reach the minimum value, which is generally accepted in
practice. A series of methods like the filters [5–8], the dead bands
[9] and the delay timers [10] have been used to deal with the alarm
thresholds. In addition, some dynamic methods have also been
investigated. Zhu [11] employed Bayesian theory to determine the
dynamic alarm thresholds with a given confidence interval during
the process transition, but the correlation among the variables is
not taken into consideration. Zang [12] employed joint probability
density functions to analyze the false alarm rate and missed alarm
rate with Bayesian inference involved. Han [13] combined FAP, MAP
and correlation consistency to optimize the multivariate alarm
thresholds. However, in these methods, the normal data and the
abnormal data must be known in advance. To avoid the distinction
of the normal and abnormal data, Yang [14] proposed the concept
that the optimal alarm limits can be selected by comparing the
correlation coefficients difference between alarm data and process
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data. But in this method, the influences of other variables are
ignored, and the time-lagged causal relationship has some limita-
tions such as the circles of the influences.

Chemical processes usually have the characteristics of strong
relevance and complex relationships. One variable can be affected
by several other variables. In order to show the interactions among
the variables and select the key correlated variables for alarm
thresholds optimization, the Interpretative Structure Modeling
(ISM) method is introduced in this paper.The ISM method is a
widely used approach for system structure modeling. It has gained
wide popularity in many fields, such as risk analysis of supply
chain [15], modeling and analysis of key factors [16,17] and fault
detection [18]. Especially, we have successfully applied the ISM
into causal model construction and alarm root-cause diagnosis
[19,20]. All experiments show the effectiveness of the ISM method
in revealing the structure of the system.

Motivated by the above consideration, we propose a new
multivariable alarm thresholds optimization methodology. Firstly,
the correlations of the process variables are analyzed by the ISM
method. The key correlated variables can be selected here to
perform alarm thresholds optimization. Then for the selected
variables, kernel density estimation is adopted to describe the
correlation of the alarm data. Correlation consistency about the
process data and the alarm data is considered to establish the
objective function, and the method of PSO is used to determine the
optimal thresholds. To show this method, the rest of this paper is
organized as follows. Theories about the ISM is introduced in
Section 2. Section 3 gives the correlation analysis of the process
data and the alarm data. Section 4 shows the specific process of
the multivariate alarm thresholds optimization methodology. In
Section 5, the method is applied to Tennessee Eastman (TE) pro-
cess and compared with the method in average alarms rate and
peak alarms rate. Conclusions are summarized in final section.

2. Data-driven interpretative structural modeling

Based on the graph theory, the ISM, an effective model for
analyzing and revealing the complicated relationships, can be used
to change the complex relationships between each element in the
system into a clear multi-level hierarchical structure. So in this
paper, a data-driven ISM is used to determine the process topo-
logical information.

Suppose the element MjARLðj¼ 1;2;…;NÞ in the system S, so
the system S can be expressed as:

S¼ Mj j j¼ 1;2; :::;N;MjARL
n o

ð1Þ

Firstly, the correlation coefficient between any two variables in
system S can be represented in matrix r:

r¼

r11 r12 ⋯ r1N
r21 r22 ⋯ r2N
⋮ ⋮ ⋱ ⋮
rN1 rN2 rN3 rNN

2
6664

3
7775
N�N

ð2Þ

where rij represents the Pearson coefficient of elements Mi and Mj.
Then, the inverse matrix c can be calculated:

c¼ invðrÞ ¼

c11 c12 ⋯ c1N
c21 c22 ⋯ c2N
⋮ ⋮ ⋱ ⋮
cN1 cN2 cN3 cNN

2
6664

3
7775
N�N

ð3Þ

Finally, the partial correlation coefficient pij between element
Mi and Mj is defined:

pij ¼ � cijffiffiffiffiffiffiffiffiffiffiffiffiffifficii � cjjp ði; j¼ 1;2;…NÞ ð4Þ

Table 1 shows the relationship between the absolute value of
the partial correlation coefficient and the degree of correlation.
The larger the absolute value is, the stronger the correlation is.

Given a threshold εð0oεo1Þ, the adjacency matrix A then can
be determined by Table 2.

Assuming that A1 ¼ ðAþIÞ;An ¼ ðAþIÞn, reachability matrix R¼
An�1 must meet the condition that A1 ¼ ðAþIÞaA2 a⋯aAn�1 ¼
An, indicating the direct or indirect relationship between the elements.

According to the reachability matrix, each element must belong
to the reachability set PðMiÞ or antecedent set Q ðMiÞ. The highest-
level L1 contains elements which can be reached by other ele-
ments while cannot reach any elements. They can be extracted
according to the following rule:

PðMiÞ \ Q ðMiÞ ¼ PðMiÞ ð5Þ
Deleting the corresponding rows and columns of elements in

the highest level L1 from reachability matrix R, a reduced matrix
R1 is obtained and used to determine the second level L2. Repeat
the above procedure until all the variables are assigned to the
appropriate levels. After the hierarchy division, the systemic
structure can be expressed in the form of a directed graph called
Interpretative Structural Model. In the structure, elements are
distributed in layers, and different elements are connected refer-
ring to the adjacency matrix.

3. Correlation analysis of process data and alarm data

3.1. Correlation analysis of process data

In order to investigate whether there is some kind of dependency
between the variables, correlation analysis is introduced, and the
direction of the dependencies and the relevance can be specified as
the correlation coefficient, such as the Pearson correlation coefficient,
the Spearman and Kendall correlation coefficient. For the continuous
data at equal intervals, for example, the process data sampled from
the DCS system, the Pearson correlation coefficient can be used. So in

Table 1
The scope of partial correlation coefficient and its corresponding relationship.

The scope of partial correlation coefficient Corresponding relationship

0 o |pij|o0.1 No relationship
0.1 r |pij|o 0.3 Low correlation
0.3 r |pij|o 0.5 Medium correlation
0.5 r |pij|o 0.8 Strong correlation
0.8 r |pij|o1 Extremely strong

Table 2
Definition of aij in adjacency matrix.

pij aij aji

ia j pij Zεj
�� 4 0 1 0

o 0 0 1
pij oεj
�� – 0 0

i¼ j – – 0 0
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