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Abstract

The numerical solution of the non-stationary, incompressible Navier–Stokes model can be split into linearized auxiliary problems of
Oseen type. We present in a unique way different stabilization techniques of finite element schemes on isotropic meshes. First we describe
the state-of-the-art for the classical residual-based SUPG/PSPG method. Then we discuss recent symmetric stabilization techniques
which avoid some drawbacks of the classical method. These methods are closely related to the concept of variational multiscale methods
which seems to provide a new approach to large eddy simulation. Finally, we give a critical comparison of these methods.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The motivation of the present paper stems from the
finite element simulation of the incompressible Navier–
Stokes problem

otu� mDuþ ðu � rÞuþrp ¼ ~f; ð1Þ
r � u ¼ 0 ð2Þ

for the velocity u and the pressure p in a polyhedral domain
X � Rd , d 6 3, with a given source term ~f. A standard algo-
rithmic treatment of (1) and (2) is to semidiscretize in time
(with possible step length control) using an A-stable
method and to apply a fixed point or Newton-type itera-
tion per time step. This leads to the following auxiliary
problem of Oseen type in each step of this iteration:

LOsðb; u; pÞ :¼ �mDuþ ðb � rÞuþ cuþrp ¼ f in X; ð3Þ
r � u ¼ 0 in X: ð4Þ

Also the iterative solution of the steady state Navier–
Stokes equations using a fixed point iteration leads to prob-
lems of type (3) and (4) with c = 0.

The standard Galerkin finite element method (FEM) for
(3) and (4) may suffer from two problems:

• dominating advection (and reaction) in the case of
0 < m� kbkL1ðXÞ,

• violation of the discrete inf–sup (or Babuška–Brezzi)
stability condition for the velocity and pressure
approximations.

The well-known streamline upwind/Petrov–Galerkin

(SUPG) method, introduced in [5], and the pressure-stabil-

ization/Petrov–Galerkin (PSPG) method, introduced in
[31,26], opened the possibility to treat both problems in a
unique framework using rather arbitrary FE approxima-
tions of velocity and pressure, including equal-order pairs.
Additionally to the Galerkin part, the elementwise residual
LOs(b;u,p) � f is tested against the (weighted) non-symmet-
ric part (b Æ $)v + $q of LOs(b;v,q). Moreover, it was
shown in [18,23,40] that an additional element-wise stabil-
ization of the divergence constraint (4), henceforth denoted
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as grad–div stabilization, is important for the robustness
if 0 < m� 1. Due to its construction, we will classify the
SUPG/PSPG/grad–div approach as an (element-wise)
residual-based stabilization technique.

Despite the success of this classical stabilization
approach to incompressible flows over the last 20 years,
one can find in recent papers a critical evaluation of this
approach, see e.g. [20,12]. Drawbacks are basically due to
the strong coupling between velocity and pressure in the
stabilizing terms. (For a more detailed discussion, cf. Sec-
tion 7.) Several attempts have been made to relax the
strong coupling of velocity and pressure and to introduce
symmetric versions of the stabilization terms:

• Recently, the interior penalty technique of the discontinu-
ous Galerkin (DG) method was applied in the framework
of continuous approximation spaces as proposed in [17]
leading to the edge/face oriented stabilization introduced
in [12]. It can be classified as well as a residual-based stabil-
ization technique since it controls the inter-element jumps
of the non-symmetric terms in (3) and (4).

• Another approach consists in projection-based stabiliza-
tion techniques. The first step was done in [16] where
weighted global orthogonal projections of the non-sym-
metric terms in (3) and (4) are added to the Galerkin
scheme. A related local projection technique has been
applied to the Oseen problem in [3] with low-order
equal-order interpolation. Another projection-based
stabilization was introduced in [32,29].

The projection-based methods are closely related to the
framework of variational multiscale methods introduced in
[25]. The latter method provides a new approach to large
eddy simulation (LES) of incompressible flows which does
not possess important drawbacks of the classical LES like
commutation errors.

The goal of the present paper is a unique presentation of
residual-based and projection-based stabilization tech-
niques to the numerical solution of the Oseen problem
(3) and (4), together with a critical comparison.

For brevity, we consider only conforming FEM. An
extension to a non-conforming approach like DG-methods
in an element- or patch-wise version can be found, e.g., in
[14,21]. The latter methods are not robust with respect to
the viscosity m. An overview of appropriate stabilization
mechanisms in the DG framework was given in [4].

The paper is organized as follows: In Section 2, we
describe the basic Galerkin discretization of the Oseen
problem. Then, we consider residual-based stabilization
methods including the classical SUPG/PSPG/grad–div sta-
bilization following [36], see Section 3, and the edge/face-
stabilization method following [12,13], see Section 4. Next,
we present projection-based stabilization techniques. Here,
we review the local projection approach proposed in [3], see
Section 5, and another projection-based stabilized scheme
due to [32,29], see Section 6. A critical comparison of the
schemes can be found in Section 7.

2. The standard Galerkin FEM for the Oseen problem

Throughout this paper, we will use standard notations
for Lebesgue and Sobolev spaces. The L2-inner product
in a domain x is denoted by (Æ,Æ)x. Without index, the L2-
inner product in X is meant.

This section describes the standard Galerkin FEM for
the Oseen-type problem (3) and (4), for simplicity of pre-
sentation with homogeneous Dirichlet data:

LOsðb; u; pÞ :¼ �mDuþ ðb � rÞuþ cuþrp ¼ f in X; ð5Þ
r � u ¼ 0 in X; ð6Þ
u ¼ 0 on oX ð7Þ

with b 2 [H1(X) \ L1(X)]d, m, c 2 L1(X), f 2 [L2(X)]d and

m > 0; ðr � bÞðxÞ ¼ 0; cðxÞP cmin P 0; a:e: in X:

ð8Þ

Let H 1
0ðXÞ :¼ fv 2 H 1ðXÞ j vjoX ¼ 0g and L2

0ðXÞ :¼ fq 2
L2ðXÞj

R
X q dx ¼ 0g. The variational formulation reads:

find U ¼ fu; pg 2 V�Q :¼ ½H 1
0ðXÞ�

d � L2
0ðXÞ s.t.

Aðb; U ; V Þ ¼LðV Þ 8V ¼ fv; qg 2 V�Q ð9Þ

with

Aðb;U ;V Þ¼ ðmru;rvÞþððb �rÞuþ cu;vÞþbðv;pÞ�bðu;qÞ;
ð10Þ

LðV Þ¼ ðf;vÞ; ð11Þ
bðv;pÞ¼�ðp;r� vÞ: ð12Þ

Suppose an admissible triangulation Th of the poly-
hedral domain X. We assume that Th is shape-regular,
i.e., there exists a constant Csh, independent of the meshsize
h with hT = h|T, such that Cshhd

T 6 measðT Þ for all
T 2

S
hTh. In particular, we exclude anisotropic elements

throughout the paper.
Moreover, we assume that each element T 2Th is a

smooth bijective image of a given reference element T̂ ,
i.e., T ¼ F T ðT̂ Þ for all T 2Th. Here, T̂ is the (open) unit
simplex or the (open) unit hypercube in Rd . For p 2 N,
we denote by P pðT̂ Þ the set fx̂a : 0 6 ai; 0 6

Pd
i¼1ai 6 pg

on a simplex T̂ or fx̂a : 0 6 ai 6 k; 1 6 i 6 pg on the unit
hypercube T̂ and define

X p
h ¼ fv 2 Cð�XÞ j vjT � F T 2 P pðT̂ Þ 8T 2Thg: ð13Þ

We introduce conforming FE spaces on Th for velocity
and pressure, respectively, by

Vr
h :¼ ½H 1

0ðXÞ \ X r
h�

d
; Qs

h :¼ L2
0ðXÞ \ X s

h ð14Þ

with r, s 2 N and we set Wr;s
h :¼ Vr

h �Qs
h. Clearly, other

conforming discrete spaces for the velocity and the pressure
can be chosen (e.g., enriched with bubble functions). More-
over, for brevity, we will not present possible extensions to
non-conforming methods.

A key point in the analysis of some methods is local
inverse inequalities on T 2Th with a constant linv depend-
ing only on the shape-regularity
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