
Generalized mathematical homogenization of atomistic media
at finite temperatures in three dimensions

Jacob Fish *, Wen Chen, Renge Li

Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Received 8 February 2006; received in revised form 2 June 2006; accepted 25 July 2006

Abstract

We derive thermo-mechanical continuum equations from Molecular Dynamics (MD) equations using the Generalized Mathematical
Homogenization (GMH) theory developed by the authors for 0 K applications. GMH constructs an array of atomistic unit cell problems
coupled with a thermo-mechanical continuum problem. The unit cell problem derived is a molecular dynamics problem defined for the
perturbation from the average atomistic displacements subjected to the deformation gradient and temperature extracted from the con-
tinuum problem. The coarse scale problem derived is a constitutive law-free continuum thermo-mechanical equation. Attention is
restricted to heat transfer by lattice vibration (phonons). The method is verified on several model problems against the reference mole-
cular dynamics solution.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Constructing thermo-mechanical equations of contin-
uum has been a subject of significant interest in physics,
material science and mechanics communities. There are
numerous challenges and several major obstacles to over-
come before such a link can be fully established. In this sec-
tion, we outline some of the key difficulties, then briefly
overview the state-of-the-art in the field and conclude with
the subset of issues we address in the manuscript.

The first difficulty is conceptual in nature; it deals with
the fact that physics describing continuum and fine scale
phenomena is different. While continuum description of
mechanical deformation can be explicitly derived from
the atomistics and this at a certain extend, has been suc-
cessfully demonstrated, the thermal part can be only
accounted for phenomenologically in the form of heat
transfer equation.

The second difficulty is associated with the formulation
of the base fine-scale model required for developing
phemenological heat transfer equations. The mechanism
by which heat is transferred depends on material system.
For instance, gases transfer heat by direct collisions
between molecules; non-metallic solids such as ceramics
transfer heat by lattice vibrations so that there is no net
motion of the media as the energy propagates through.
Such heat transfer is often described in terms of ‘‘pho-
nons’’, quanta of lattice vibrations. Metals, on the other
hand, have free electrons, which are not bound to any par-
ticular atom. As the electrons move, they undergo a series
of collisions; the faster electrons (on the hot side of the
solid) give off some of their energy to the slower electrons.
Conduction through electron collision is more effective
than through lattice vibration; this is why metals generally
are better heat conductors than ceramic materials, which
do not have many free electrons. This implies that for met-
als the base mathematical model that describes motion of
atoms using Newton’s laws does not contain sufficient
information for developing a complete phemenological
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model of heat transfer. Quantum mechanical consider-
ations are unavoidable in this case.

The third difficulty is purely computational. Determinis-
tic atomistic level computations, which solve numerically
Newton’s equations of motion, can model systems up to
the order of 4 · 109 atoms for time scales of the order of
nanoseconds [1], still orders of magnitude below continuum
length and time scales, being of the order of millimeters and
milliseconds. Continuum-level simulations operate in the
latter regimes, but do so at the expense of explicit atomistic
resolution. This difficulty can be partially circumvented by
introducing an intermediate so-called coarse-grained model
(or meso-scale model). The well-known examples of such a
coarse-grained model are dislocation dynamics and coarse-
grained molecular dynamics just to mention a few.

There have been numerous attempts to reconcile
between fine scale and continuum thermo-mechanical
descriptions. One of the most fundamental approaches is
based on statistical mechanics, which converts atomistic
data to macroscopic observables such as pressure, energy,
heat capacities. In a somewhat related effort, Zhou [2]
developed an equivalent deterministic thermo-mechanical
continuum theory based on decomposing atomistic velocity
into a structural deformation and thermal oscillation parts.
A similar starting point has been employed by Li and
Weinan [3] within the framework of the Heterogeneous
Multiscale Method (HMM) [4]. The method consists of
numerical solution of thermo-mechanical equations of con-
tinuum and finding the missing constitutive data (mechan-
ical and thermal) by performing atomistic simulations
subjected to local boundary conditions extracted from the
continuum. An extension of the quasi-continuum method
to finite temperature regime has been recently proposed
in [5] by incorporating potential of mean force (PMF) orig-
inally introduced by Kirkwood in 1935 [6]. Several other
noteworthy approaches originally developed for zero-tem-
perature applications have been recently extended to finite
temperatures. These include the Coupled Atomistics and
Discrete Dislocation (CADD) method [7], the Bridging
Scale Method [8] and the Bridging Domain Method [9].

This paper represents an initial effort aimed at deriving
thermo-mechanical continuum equations using General-
ized Mathematical Homogenization (GMH) theory origi-
nally developed by the authors for 0 K applications
[10,11]. We only address a subset of aforementioned issues.
Since the base model from which we derive continuum

equations is molecular dynamics, only heat transfer due
to lattice vibration (phonons) is accounted for. We do
not introduce an intermediate (meso) scale (see Fig. 1),
but rather focus on linking MD (describing motion of
atoms or coarse-grained discrete medium) with thermo-
mechanical continuum equations. The proposed multiscale
approach is somewhat resembles HMM [4] with the main
difference being that the coarse scale problem is derived
directly from atomistics without making any a priori

assumption about its mathematical structure. Numerical
experiments are conducted to verify the multiscale formula-
tion against the reference molecular dynamics solution.

2. Governing equations

2.1. Molecular dynamics equation of motion

We consider a periodic atomistic medium composed of
N atoms. The initial position of atom i in the reference con-
figuration is denoted by Xi, i = 1,2, . . . ,N. The displace-
ment of atom i with respect to the reference position is
designated by ui. Upon deformation, the new position of
atom i is xi, given by

xi ¼ Xi þ ui; ui ¼ uiðXi; tÞ: ð1Þ
The vector separating two atoms i and j in the reference

configuration is given by

Xij ¼ Xj � Xi: ð2Þ
The corresponding vector separating two atoms in the

deformed configuration is

xij ¼ xj � xi ¼ Xij þ ujðXj; tÞ � uiðXi; tÞ: ð3Þ
Hereafter the Roman subscripts i and j are reserved for

atoms labels and will not be subject to summation conven-
tion. Spatial directions, for which summation convention
over repeated indices is applied, will be denoted by Greek
subscripts.

For simplicity, we focus our attention to pairwise poten-
tials. However, the formulation can be extended to other
potentials governing nonmetallic materials. For pairwise
potentials, the interaction between atoms i and j is depicted
by the interatomic potential Uij(xij). The interatomic force
fij applied on atom i by atom j is evaluated as

f ij ¼
oUijðxijÞ

oxij

xij

xij
; ð4Þ
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Fig. 1. An atomic chain and a unit cell.
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