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a b s t r a c t

The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time
sliding mode approach. This methodology is designed for linear saturated system. The saturation con-
straint is reported on inputs vector. To this end, the back stepping design procedure is followed to
construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It
is well known that the mechanisms are investigated in term of the most proposed assumptions to deal
with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust
controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor
speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are
presented.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Wind energy was proved being an important source of clean
and renewable energy because no fossil fuels are burnt in elec-
trical energy production. Nowadays, the renewable energy
industry is intensively accelerating the concerns about natural
recourses exhaustion and climate change. Advances in wind tur-
bine technology made necessary the design of more powerful
control systems [1–5]. It is to improve as much as possible the
performances with cost reduction for wind turbines and to make
them more profitable and more reliable. Many works in wind
energy conversion control systems deal with the optimization of
extracted aerodynamic power in partial load area [6,7].

For this purpose, classical controllers have extensively used PI
regulator. Then, optimal and adaptive control has large-scale
applications [8–14]. Among the greatest interests of control
application, we distinguish saturation constraint procedure. In
fact, this phenomenon is due to inherent physical limitations of
devices. Though often ignored as in classical control theory, it
cannot be avoided in practice. Unfortunately, failure in accounting
for saturation constraint may lead to severe deteriorations of
closed loop system performance, and even to instability. Many
rigorous design methods are available to provide guaranteed
proprieties on stability of systems. Let us quote from these

methods including the anti-windup design [15–18]. All of them
introduce conditions on systems containing saturation functions
[19–21]. In robustness terms, sliding mode is a very significant
transitory mode for the variable structure control [22,23]. Early
work was mainly done by soviet control scientists [24–26]. In
recent years, we find more research and many successful appli-
cations [27,28]. Recently, a sliding mode control in the discrete-
time domain is attracting the attention. Many previous works have
used discretized version of continuous-time design schemes for
systems [29–32]. By using microprocessors provided via compu-
ters, controllers of current systems are totally implemented in
discrete-time domain. This fact surpasses the old threats of control
system instability after sampling in continuous-time domain.

This paper is organized as following: as a start, we present
discretized system and we introduce the structure of saturation
constraint reported in control vector and its implementation in the
discrete system. Then, we describe wind turbine modeling. After
that, we validate the theoretical concepts of this work; by treating
a variable speed wind turbine application.

2. Problem statement

2.1. Discrete-time systems

Consider the continuous system:

_xðtÞ ¼ AxðtÞþBuðtÞ: ð1Þ
xðtÞAℜn is the state vector.
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uðtÞAℜm is the control input.
AAℜn�n is the state matrix.
BAℜn�m is the input matrix.

Assumption 1. The pair ðA;BÞ is controllable, B has full rank m,
and n4m. The continuous system time response is given by

xðtÞ ¼ eAðt� t0Þxðt0Þþ
Z t

t0
eAðt� t0ÞBuðτÞdτ; ð2Þ

Let t0 ¼ kT and t ¼ ðkþ1ÞT for integer k. defining the sampled
state function as xk ¼ xkT . Assuming that the control input uðtÞ is
reconstructed from the discrete control sequence uk by using a
zero-order hold, uðtÞ have constant values of ukT ¼ uk; over the
integration interval. The equivalent discrete form of the system is
then:

xkþ1 ¼ΦxkþΓuk; ð3Þ
where

Φ¼ eAT ¼ IþATþA2T2

2!
þ :::; ð4Þ

Γ ¼
Z T

0
eAτBdτ¼ BTþABT2

2!
þ ::: ð5Þ

where k¼ 0;1;2; :::
xð:ÞAℜn is the state vector.
uð:ÞAℜm is the control input.
ΦAℜn�n is the state matrix.
ΓAℜn�m is the input matrix.

2.2. Saturation structure

In the literature, various forms of saturation function structure
are available.

Assumption 2. The control vector is subject to constant limita-
tions in amplitude.

It is defined by

uk ¼ ukAℜm=�ui
minrui

krui
max;u

i
min;u

i
max40; 8 i¼ 1:::m

n o
: ð6Þ

The term of saturation has the following form:

satðKxkÞ ¼
ui
max if ðKxkÞi4ui

max

ðKxkÞi if �ui
minr ðKxkÞirui

max

�ui
min if �ðKxk Þio�ui

min

; 8 i¼ 1; :::;m:

8>><
>>: ð7Þ

We can write:

satðKxkÞ ¼ΛðςðxkÞÞKxk: ð8Þ
where the elements ςiðxkÞ of the diagonal matrix ΛðςðxkÞÞ are
expressed as follows:

ςiðxkÞ ¼

uimax

ðKxkÞi
if ðKxkÞi4ui

max

1 if �ui
minr ðKxkÞirui

max

� ui
min

ðKxkÞi
if �ðKxkÞio�ui

min

; 8 i¼ 1; :::;m:

8>>>><
>>>>:

ð9Þ

with

0oςiðxkÞr1: ð10Þ
The saturated system can be written as

xkþ1 ¼ΦxkþΓΛðςðxkÞÞuk: ð11Þ
To simplify, we consider ΛðςðxkÞÞ ¼ΛðxkÞ and we can write:

xkþ1 ¼ΦxkþΓΛðxkÞuk: ð12Þ

3. Sliding mode control

3.1. Discrete sliding surface

The sliding mode occurs when the state reaches and remains in
the surface:

S¼ \m
j ¼ 1Sj ¼ xkAℜn : sk ¼ Fxk ¼ 0

� �
; ð13Þ

Assumption 3. ðFΓÞ is non-singular, with FT Aℜn.

The following sliding dynamics is globally, uniformly and
asymptotically stable:

sk � 0; ð14Þ
Differentiating with respect to incrementing in time, the sliding

dynamics (14) can be rewritten as

Skþ1 ¼ Fxk ¼ FΦxkþFΓΛðxkÞuk;

¼ Sk;
¼ Fxkþ1;

¼ 0: ð15Þ
where k¼ 0;1;2; :::

If (FB)�1 exists and using the equivalent control input uk ¼ ueq;k.
Then we obtain:

ueq;k ¼ �ðFΓΛðxkÞÞ�1FΦxk;

¼ �Κeqxk; ð16Þ
with

Κeq ¼ ðFΓΛðxkÞÞ�1FΦ: ð17Þ
For the nominal system, therefore, the dynamics in the sliding

mode can be expressed as

xkþ1 ¼ΦxkþΓΛðxkÞueq;k; ð18Þ

xkþ1 ¼ ½In�ΓΛðxkÞðFΓΛðxkÞÞ�1FΦ�xk; ð19Þ

xkþ1 ¼Φeqxk; ð20Þ

Φeq ¼ ½In�ΓΛðxkÞðFΓΛðxkÞÞ�1FΦ�: ð21Þ
Φeq describes the motion on the sliding surface and depends

only on the choice of F and ΛðxkÞ.

3.2. Design of the discrete sliding mode

In this part, we will prove the existence of sliding mode. Indeed
the canonical form can be extended to saturated systems to select
the gain matrix F.

Assumption 4. There exists an ðn� nÞ orthogonal transformation
matrix T such that yk ¼ Txk:

with yTk ¼ yT1;k yT2;k
h i

, y1;kAℜn�m and y2;kAℜm.
The transformed system can be rewritten as

y1;kþ1 ¼Φ11y1;kþΦ12y2;k;

y2;kþ1 ¼Φ21y1;kþΦ22y2;kþΓ2ΛðykÞuk: ð22Þ
Then

TΦTT ¼
Φ11 Φ12

Φ21 Φ22

" #
: ð23Þ

and

TΓ ¼
0
Γ2

" #
: ð24Þ

where Γ2 is ðm�mÞ and non-singular. The new defining sliding
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