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a b s t r a c t

A novel numerical approximation scheme is proposed for fractional order systems by the concept of
identification. An identical equation is derived firstly, from which one can obtain the exact state space
model of fractional order systems. It reveals the nature of the approximation problem, and then provides
an effective scheme to obtain the desired model. This research project also focuses on solving a knotty
but crucial issue, i.e., the initial value problem of fractional order systems. The results generated by the
study prove that it can reduce to the Caputo case by selecting some specific initial values. A careful
simulation study is reported to illustrate the effectiveness of the proposed scheme. To exhibit the
superiority clearly, the results are compared with that of the published fixed-pole finite model method.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The idea of fractional order calculus has been known since the
development of the regular integer order calculus. The initial
research is associated with Leibniz and L'Hospital [1–3]. Although
fractional order calculus has been existing for a long time, the
development in this research field is rather slower than the integer
order case. Nonetheless, the attention to fractional order calculus
has been increasing in the control community since the 70s of last
century. There are mainly two reasons for this boom. First, various
physical practical materials and processes can be properly
described by using fractional order calculus, which provides
excellent tools to describe their properties [4,5]. Second, compared
with the conventional (integer order) controllers, fractional order
controllers exhibit their superiority in the transient performance,
the robust ability and the design freedom [6–8]. Due to the tre-
mendous efforts devoted by researchers, valuable results have
been obtained on fractional order calculus. The details of the most
recent advance in fractional order calculus can be found in some
excellent monographs [9–11], review articles [4,5], and the refer-
ences listed in the paper.

What can be concluded from the studies is that there are two
essential characteristics of fractional order calculus. First, as a
generalization of traditional integer order calculus, it can describe
many practical plants more precisely in frequency domain, such as,
using the magnitude–frequency characteristic curve with the slope
of �20α dB=oct, αA ð0;1Þ. Second, it has the long range memory
phenomenon. It can reflect and describe the effects caused by
historical data on the system well. These characteristics bring
some limitations in return. For example, fractional order calculus
has weak singularity, which leads to the difficulty of solving the
analytic solutions for fractional differential equations. Further, this
also makes it difficult to simulate fractional order systems and
implement fractional order controllers [10]. Therefore, a number of
achievements in its alternative numerical methods grow vigor-
ously [12–14]. Among these methods, there is a common proce-
dure. That is, the fractional order calculus operators will be
approximated by anyone of the methods first, then the relevant
approximate results are further extended to fractional order
systems.

In 2000, the noted Oustaloup method was proposed for frac-
tional order differential operators, which is a recursive approx-
imation algorithm [15]. In 2003, another approximation method
for fractional order integral operators was developed [16]. These
methods can achieve good approximate performance in both
magnitude frequency and phase frequency characteristics. Yet,
these methods do not have a good performance at the edge of the
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frequency range that is interested. In 2006, the Oustaloup method
was modified, so that the approximate accuracy in the whole
frequency range was improved [17]. Afterward, a chain of perti-
nent methods was proposed [18–20], which are all aimed to
improve the approximate accuracy by different means. Until 2014,
there came a breakthrough in the research that the focus of the
study is turned from high approximate accuracy to low approx-
imate order revolutionarily [21]. By using this proposed first-order
parallel frequency model (FPFM) method, a lower order approx-
imate model can be obtained without sacrificing the accuracy.

Although some aforementioned methods have been exten-
sively used in many applications, there still exist several limita-
tions in such methods. To break through these limitations, this
paper derives a new scheme with the following improvements.
(i) With the aids of the identification, we configure the zeros and
poles of the approximation model's transfer function directly,
while the published Oustaloup-based-methods have wrong ideas
in this issue. They assume the Bode magnitude diagram as a
polygonal line which is actually a smooth curve. Thus, as a result,
there are no strict turning points which were treated as zeros and
poles. (ii) The relevant study on the relationship between the pure
integration feature of 1

sα and the order α is conducted and the
implicit character is revealed. Hereafter, we provide a guidance on
whether the first pole should be set as zero. As of today, it is the
first time to consider this issue. (iii) In our design, zeros and poles
are selected in complex domain while the existing methods set
poles and zeros as real numbers. The extension of these ranges
will result in the potent to achieve a higher approximation accu-
racy. (iv) The fixed-pole idea is introduced and applied in our
design, which corresponds to lower approximate order and larger
engineering applicability than that of varying-pole method. In
other words, the proposed scheme does not only focus on the
approximate accuracy but also focus on the implementation costs,
which is the same as [21]. (v) The initial value problem is con-
sidered in the design procedure of the proposed method while the
existing methods rarely focus on it. However, the initial value
problem is indeed an inevitable issue of fractional order systems
[22,23].

The rest of the content stated in this paper is organized as
follows. Section 2 presents basic definitions and relevant facts for
fractional order calculus. Additionally, the problem highlighted
above is clearly defined. Section 3 establishes a novel fixed-pole
numerical approximation scheme for fractional order systems.
Section 4 provides four numerical examples to validate the wide
applicability of the proposed method. Section 5 draws the
conclusions.

2. Preliminaries

2.1. Fractional order calculus

Fractional order calculus is the generalization and unification of
the traditional integer order calculus. There are many definitions
related to the different fractional order derivatives, such as, Rie-
mann–Liouville, Caputo and Grünwald–Letnikov. However, all of
them have weak singularity that generates globality in space and
long memory in time. As of today, there is no global consensus for
the state space representation of a fractional order system, parti-
cularly on the process of initialization.

Note that these widely applicable fractional order derivative
definitions are derived from Riemann–Liouville integral [9].
According to this definition, the α-th integral of function uðtÞAR

can be expressed as

y tð Þ ¼ t0 Iαt u tð Þð Þ ¼ 1
Γ αð Þ

Z t

t0
t�τð Þα�1u τð Þ dτ; ð1Þ

with the Gamma function Γ zð Þ ¼ R1
0 xz�1e�x dx and positive real

α.
The Laplace transform of the fractional order integration

operation can be formulated as

Iα sð Þ ¼ L y tð Þ½ �
L u tð Þ½ � ¼

1
sα
: ð2Þ

This fractional order integrator Iα sð Þ is the key element in the
simulation process of the fractional order control systems. How-
ever, the realization of Iα sð Þ, either in analog or numerical form, is
not a simple task. Especially, when one considers the initial con-
ditions, it becomes much difficult than that of the integer
order case.

2.2. The exact state space model

Theorem 1. For any sAC and αAð0;1Þ, the following equation
holds:Z 1

0

μα ωð Þ
sþω

dω¼ 1
sα
; ð3Þ

where μα ωð Þ ¼ sin απð Þ
ωαπ .

Proof. Due to the fact that π
sin απð Þ is a special value in complex

analysis, (3) can be equivalently expressed asZ 1

0

1
ωα

1

1þω
s

sα

s
dω¼ π

sin απð Þ: ð4Þ

Defining a new integral variable t ¼ ω
s , then (4) can be trans-

formed asZ 1

0

1
tα

1
1þt

dt ¼ π
sin απð Þ: ð5Þ

At this point, we just need to prove the establishment of (5).
Recalling the definition and properties stated in Beta function

[9], one can obtain

B α;1�αð Þ ¼ B 1�α;αð Þ ¼
Z 1

0
τ�α 1�τð Þα�1 dτ¼ π

sin απð Þ: ð6Þ

If we define a new integral variable t ¼ τ
1�τ, the above equation

becomes

B α;1�αð Þ ¼
Z 1

0

1
tα

1
1þt

dt; ð7Þ

and this completes the proof.□

By introducing the concept of transfer function, Lemma 1 can
be obtained easily.

Lemma 1 (Montseny [24]). The fractional order system DαyðtÞ ¼ u
ðtÞ with uðtÞAR and 0oαo1 is actually a linear frequency dis-
tributed system. Its frequency distributed state z ω; tð ÞAR satisfies

∂z ω; tð Þ
∂t

¼ �ωz ω; tð Þþv tð Þ ð8Þ

and the output y tð Þ of the fractional order integrator is the weighted
integral

y tð Þ ¼
Z 1

0
μα ωð Þz ω; tð Þ dω: ð9Þ

Remark 1. In fact, because of the definition of transfer function,
zero initial conditions should be guaranteed, i.e., yðtÞ ¼ 0; tr0.

Y. Wei et al. / ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: Wei Y, et al. An innovative fixed-pole numerical approximation for fractional order systems. ISA Transactions
(2016), http://dx.doi.org/10.1016/j.isatra.2016.01.010i

http://dx.doi.org/10.1016/j.isatra.2016.01.010
http://dx.doi.org/10.1016/j.isatra.2016.01.010
http://dx.doi.org/10.1016/j.isatra.2016.01.010


Download English Version:

https://daneshyari.com/en/article/5004023

Download Persian Version:

https://daneshyari.com/article/5004023

Daneshyari.com

https://daneshyari.com/en/article/5004023
https://daneshyari.com/article/5004023
https://daneshyari.com

