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a b s t r a c t

This paper presents a predictive control algorithm for non-linear systems based on successive linear-
izations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and
the non-convex constrained optimization problem is transformed into a sequence of locally convex ones.
The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To
account for linearization errors and to obtain more accurate results an inner iteration loop is added to the
algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also pre-
sented. The convergence of the iterative process and the stability of the closed-loop system are analyzed.
The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type
unmanned aerial vehicle.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) refers to a class of algorithms in
which models of the plant are used to predict the future behavior of
the system over a prediction horizon. It is formulated by solving an
on-line optimization problem. The optimal control input sequence is
calculated by minimizing an objective function subject to constraints.
Only the first element of the computed optimal control input is
applied to the plant according to a receding horizon strategy [1,2].
Linear MPC has been successfully applied in a variety of cases due to
its ability to explicitly incorporate the system model and state/inputs
constraints into the control calculation [3–6].

In the last few decades, MPC principles have been extended to
non-linear processes yielding to non-linear model predictive
control (NMPC). The use of general non-linear programming (NLP)
techniques to solve the NMPC problem has been proposed in
several works [7–10]. However, the solution methods based on
NLP present some drawback. First, these algorithms are compu-
tationally demanding, as they require to solve on-line a non-linear
optimization problem. Moreover, the constraints introduced by

the non-linear model dynamics yield to non-convex optimization
problems.

Linearization and linear approximation have been adopted in a
variety of works to overcome the computational complexity pro-
blem [11,12]. The main advantage of these methods lies in the fact
that the model used in the prediction calculation is a set of local
linear approximation of the dynamics of the plant, thus converting
the non-linear optimization problem into a set of locally convex
ones, as it is done in [13–15]. However, linear predictive control
techniques do not automatically ensure the stability of the closed-
loop system. This issue has been studied by numerous researchers
for many years (see [11,16] for an overview). One way to address
the stability problem is to add a contractive constraint to the
optimization problem. This idea was firstly introduced by Yang and
Polak [17] and the stability proof was developed by De Olivera and
Morari [18]. In this approach, the authors propose to add a con-
tractive constraint that forces the system states to decrease at each
time step. To the best of our knowledge, there are few works that
address the addition of such contractive constraint and also this
constraint has only been used to contract the system states.

In this paper we present a novel robust predictive control algo-
rithm for non-linear systems. The proposed algorithm uses a linear-
ization process along pre-defined trajectories that transform the non-
convex optimization problem into a set of locally convex ones, which
can be solved using the standard quadratic programming (QP) tech-
niques. Here, to address stability and convergence issues, the addition
of a set of contractive constraints to the optimization problem is
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analyzed. These constraints force the cost functions to decrease or (at
least) to remain constant within the current time instant, thus
allowing us to take into account disturbances and determining an
upper bound of the cost functions value. Moreover, an inner iteration
loop is added to the proposed algorithm to account for linearization
errors and to obtain more accurate results.

The organization of this paper is as follows: in Section 2 the
formulation of the NMPC algorithm with the addition of the con-
tractive constraint is presented. In Section 3 a simple methodology
to obtain an outer bounding-tube for state trajectories is analyzed.
In Section 4 an inner iteration loop is added to the previous
algorithm. Simulation results are shown in Section 5. Finally,
conclusions are discussed in Section 6.

2. Non-linear model predictive control formulation

Consider the discrete non-linear system

xkþ1 ¼ f xk;uk; dkð Þ ð1Þ
where xk ¼ xðkÞARn, uk ¼ uðkÞAUDRm and dk ¼ dðkÞADDRl are
the state vector, the control input vector and the bounded dis-
turbance vector, respectively, U is the input constraint set and f ð�Þ
is a continuous and differentiable vector function that describes
the dynamics of the system.

The non-linear model predictive control problem is formulated
as a regulatory problem stated as follows:

For a given1 disturbance sequence

dk ¼ dkj k;…; dkþN�1j k
� �T

; ð2Þ
find at each time instant k, a control input sequence

uk ¼ ukj k;…;ukþN�1j k
� �T

; ð3Þ
and predicted state sequence

xk ¼ xkþ1j k;…; xkþN j k
� �T

; ð4Þ
over a prediction horizon of N sampling intervals, such that

min
uk AU

J ðkÞ
s:t: xkþ1 ¼ f ðxk;uk; dkÞ: ð5Þ

The vectors dkþ ij k, ukþ ij k and xkþ ij k in Eqs. (2), (3) and (4) repre-
sent the disturbance, input and state vectors respectively at time
kþ i that are predicted using the information available at time k.2

The optimal solution of the problem (5) is denoted here as

un

k ¼ un

kj k;…;un

kþN�1j k
h iT

: ð6Þ

Regardless of the cost function J ðkÞ is convex or not, the
optimization problem (5) is non-convex due to the non-linearity of
the system dynamics, and the computational effort is a major issue
in its on-line implementation. If J ðkÞ is chosen to be a quadratic
cost function, then the convexity of (5) can be recovered by
approximating the non-linear model (1) with a linear time-varying
(LTV) one [19,20], which can be obtained linearizing the system
around a desired state and input trajectory xr

k, u
r
k, where

xr
k ¼ xrkþ1j k;…; xrkþN j k

h iT
; ð7Þ

and

ur
k ¼ ur

kj k;…;ur
kþN�1j k

h iT
: ð8Þ

Assuming that a reference perturbation drkþ ij k, i¼ 0;…;N�1 is
given or estimated, then the dynamic behavior of the deviation
from the desired trajectory can be written as an LTV model

~xkþ1j k ¼ Akj k ~xkj kþBuk j k ~ukj kþBdk j k
~dkj k; ð9Þ

where

~xkj k ¼ xkj k�xrkj k; ~ukj k ¼ ukj k�ur
kj k and ~dkj k ¼ dkj k�drkj k: ð10Þ

The matrices Akj k, Buk j k and Bdk j k , are the Jacobian matrices of the
discrete non-linear system (1), and they are defined as follows:

Akj k ¼
∂f ðxk;uk;dkÞ

∂xk

����
ðnÞ
; Buk j k ¼

∂f ðxk;uk; dkÞ
∂uðkÞ

����
ðnÞ
;

Bdk j k ¼
∂f ðxk;uk; dkÞ

∂dðkÞ

����
ðnÞ
; ð11Þ

where ðnÞ stands for ðxrk;ur
k; d

r
kÞ. In terms of the LTV system (9), the

following quadratic objective function J ðkÞ, commonly used in the
literature, is adopted

J ðkÞ ¼
XN�1

i ¼ 0

~xTkþ ij kQ ~xkþ ij kþ ~uT
kþ ij kR ~ukþ ij k

h i
þ ~xTkþN j kPkj k ~xkþN j k;

ð12Þ

where Q ;R; Pkj k are positive definite matrices; Pkj k is the terminal
weight matrix that is chosen so as it satisfies the Lyapunov
equation

Pkj k�AT
kj kPkj kAkj k ¼ Q : ð13Þ

As a result, the non-convex optimization problem (5) can be
rewritten as a convex optimization problem as follows:

min
~uk AU

J ðkÞ

s:t:

~xkþ1j k ¼ Akj k ~xkj kþBukj k ~ukj kþBdkj k
~dkj k;

~xkj k ¼ xkj k�xrkj k;

~ukj k ¼ ukj k�ur
kj k;

~dkj k ¼ dkj k�drkj k:

8>>>>><
>>>>>:

ð14Þ

In Algorithm 1 the NMPC receding horizon control technique is
summarized.

Algorithm 1. NMPC algorithm.

Given Q ;R40, xkj k the initial condition.
Step 1: Obtain the linearization trajectory xr

k, u
r
k using as initial

condition u0
k ¼ ½un

kj k�1;u
n

kþ1j k�1;…;un

kþN�2j k�1;0�T and

estimate dkþ i for i¼ 0;…;N�1
Step 2: Obtain the LTV system (9) and Pkj k solving (13)

Step 3: Compute the optimal control input sequence ~un

k solving
(14)

Step 4: Update un

k’ur
kþ ~un

k

Step 5: Apply ukj k ¼ un

kj k to the system

Step 6: Move the horizon forward to the next sampling instant
k’kþ1 and go back to Step 1

Linearization techniques are the most straightforward ways to
adapt linear control methods to non-linear control problems. In
the absence of perturbations and linearization errors, Algorithm 1
will guarantee the closed-loop stability.

1 If dk is not available, the most common assumption is
dkþ i ¼ dkþ i�1 ; i¼ 1;…;N.

2 When it clearly refers to current time k, the time dependency at which the
information is available will be omitted, i.e. ð�Þkþ ij k ¼ ð�Þkþ i .
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