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This paper presents a new system configuration and a design method to improve control performance for
a system with an input time delay and disturbances. The equivalent-input-disturbance approach is
extended to handle a time-delay system. It is combined with the Smith predictor to reject disturbances. A
delay-dependent stability condition is devised in terms of a matrix inequality by using the free-
weighting matrix approach. The gain of the observer is designed by applying the cone complementary
linearization method to the matrix inequality. A numerical example demonstrates the validity of the
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1. Introduction

A time delay is often encountered in many practical systems,
such as chemical processes, biological mechanisms, and mechan-
ical apparatus [1-3]. Since a time delay decreases the stability
margin of a closed-loop system, the design of a robust time-delay
control system is a challenging problem, and has been drawing
considerable attentions [4-7].

Various methods have been proposed to improve the robust
performance of a closed-loop time-delay system [8-10]. The
Smith predictor (SP) [11-13] among them is the one that has
been widely used. It equivalently removes a time delay out of the
closed control loop, and stabilizes the time-delay system. How-
ever, disturbance-rejection performance is not satisfactory for
the SP. While sliding mode control (SMC) [14,15] is an effective
method to solve this problem, it may cause high-frequency
oscillation. This makes it difficult to implement the control law
for a mechatronic system.

Some methods that actively compensate disturbances have
been widely noticed. The equivalent-input-disturbance (EID)
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approach is one among them. It was devised to reject both mat-
ched and unmatched disturbances effectively [16-18]. An EID is a
signal on the control input channel of a system that produces the
same effect on the output as actual disturbances do. This approach
does not require a prior information about disturbances. And since
it does not use the inverse dynamics of a plant, it avoids the
cancelation of unstable poles and zeros, which happens in a dis-
turbance observer.

This paper considers a guaranteed-cost control problem for a
plant with both of an input time delay and a non-stationary dis-
turbance. The control system combines the SP with the EID
approach, which is called the SP-EID control system here after, to
improve control performance. Since the guaranteed-cost control
method provides a control law that not only stabilizes a time-
delay system but also ensures an adequate level of control per-
formance, such a control law is presented in this paper to guar-
antee the upper bound of a specified linear integral-quadratic cost
function. A delay-dependent sufficient stability condition is
derived in terms of a matrix inequality. And the gain of the
observer is obtained from the condition using the cone com-
plementary linearization method. The validity of the method is

demonstrated through simulations.
In the rest of the paper, [/ £] is indicated by [} £].
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2. Configuration of SP-EID of control system

Consider the following linear time-invariant time-delay plant:

M

X(t) = AX(t)+ Bu(t — 7)+ Byd(t),
Y(®) = Cx(),

where x(t) e R" is the state; u(t) e R™ is the control input; y(t) e RY
is the output; d(t) e R™ is a disturbance; and A, B, By, and C are
constant matrices with suitable dimensions. 7 is a scalar repre-
senting the delay in the system. The initial condition is
X(O)l¢=0=x(0).

The following assumptions are made for (A,B,C). They are
standard in control system design.

Assumption 1. (A,B,C) is controllable and observable.

Assumption 2. (A, B, () has no zeros on the imaginary axis.

The configuration of the SP-EID control system is shown in
Fig. 1. The system contains the plant, a controller C(s), the SP, a
state observer, and an EID estimator. The EID estimator is extended
from its original form in [18] to the one in the figure so as to
handle the time delay in the plant. Note that

B*:=(B'B)~'BT ()

in the estimator.
According to the definition of the EID [ 18], we introduce an EID,
d.(t), on the control input channel, and describe the plant as

{ X(t) = Ax(t) + Blu(t — 1)+ de(D)],

Y = Cx(t). £

In the above equation, we abuse the notation a little bit, and
use the same variable, x(t), to indicate the state of both the original
plant and that in (3). This should not cause confusion.

Let G(s) = C(sI—A)~'B. Then, the transfer function of the plant
from u(t) to y(t) is given by P(s) = G(s)e = .

A full-order observer is used to estimate the EID. The state-
space representation of the observer is

£(t) = AR(D +Bug(t — 7) + Ly(©) — § (D)),

{ §it) = R, @

where X(t) is a reconstruction state of x(t).

Smith predictor

Following the same line as that in [18], it is easy to show that an
estimate of the EID is given by

de(t) = BT LCR(t)+ up(t —7) —u(t — 1), (5)
where
X(t) = x(H)—X(b). (6)

A low-pass filter, F(s),

XE(t) = Apxp(t) + Brde(t), -
de (t) = Crxg(0),

is used to select the angular-frequency band width for the EID
estimation. It satisfies

|Fjw)| =1, Ywel0,wy], (3)
where @, is the highest angular frequency of the disturbance. A
suitable filter has its cutoff angular frequency being more than 5-
10 times larger than w,. The filtered disturbance, d.(t), is given by
De(s) = F(s)De(s), 9
where De(s) and D.(s) are the Laplace transformations of d,(t) and
d.(t) respectively.

A new control law of the control system is

u(t) = up(t) — de (t). (10)

3. Stability analysis and system design of SP-EID control
system

This section first analyzes the stability of the SP-EID control
system, then presents a design method based on the analysis

result.

3.1. Stability analysis

Let the reference input and the disturbance be zero, that is,
rt)y=0, d(t)=0. 11
The plant is described by
{ X(t) = Ax(t)+Bu(t — 1),

(12)

y(t) = Cx(t).
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State observer

Fig. 1. Configuration of SP-EID control system.
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