ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 196 (2007) 988-1005

Computer methods
in applied
mechanics and
engineering

www.elsevier.com/locate/cma

Computational methods for the fast boundary stabilization
of flexible structures. Part 1: The case of beams

F. Bourquin **, B. Branchet ®, M. Collet °

& Laboratoire Central des Ponts et Chaussées, and Laboratoire Lagrange, 58 bd Lefebvre, 75015 Paris, France
b ESILV, 92916 Paris La Défense, France
¢ FEMTO-ST, 24 chemin de I'épitaphe, 25000 Besangon, France

Received 8 August 2005; received in revised form 19 July 2006; accepted 1 August 2006

Abstract

An efficient active control strategy for flexible systems [V. Komornik, Rapid boundary stabilization of linear distributed systems,
SIAM J. Control Optim. 35 (5) (1997) 1591-1613] is thoroughly investigated from the numerical point of view. A non-standard compu-
tational framework is proved to be relevant both for simulation and control synthesis. The proposed formulation proves necessary in so
far as a standard numerical approach is shown to fail. The observed properties of the state feedback law confirm the theory as far as
beams are concerned. In particular, one can achieve an arbitrarily large decay rate of some weak norm of the system. Moreover, the
control law compares favourably with the integral force feedback in terms of efficiency. Finally, smoothing procedures are introduced
to decrease the control spill-over associated with the possible lack of compatibility between boundary control and initial conditions. This
purely artificial spill-over is proved to result from oversimplification of the control process modelling.
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1. Introduction

There exist various strategies to control the vibrations of
flexible structures: the most natural one is probably the
direct velocity feedback (DVF) [6] that amounts to impose
a force opposite to the measured velocity at the same point.
The integral force feedback (IFF) [1,62] can be viewed as a
special implementation of the DVF with built-in roll-off at
high frequency. These collocated approaches do not rely on
any model, and thus do not generate spill-over, but may
lack efficiency due to the possible spatial localization of
the damping effect and to the necessary low- or high-pass
filtering which may deteriorate the performances at high
or low frequencies. Moreover, spill-over may show up in
practice due to the difficulty to achieve collocation, and
due to sensor or actuator dynamics. Non-collocated
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approaches such as the classical LQ or H™ strategy are
a priori more efficient provided that controllability
hold [71,65,58,31,45]. Nevertheless, a state-space model is
required for implementation purposes, and its necessary
finite-dimensional approximation may give rise to spill-
over instabilities [5], although several large-scale field
implementations on bridge piles during construction are
based on non-collocated strategies [39].

Following Lions works [50-52] on the exact controlla-
bility of partial differential equations, Komornik has intro-
duced an efficient and simple strategy to stabilize linear
evolution equations including the case of flexible structures
[40-42]. His method assumes the exact controllability of
the system to hold at the continuous level. This property
depends on the physics of the system and of the geometry.
See e.g. [52,10,43,63,37,48,30,32,3,55,46,47,54,70,25,38,11,
15,18]. Whenever the exact controllability of the structure
holds, just inverting a modified controllability Gramian
[40-42] leads to a control ensuring a uniform decay rate
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of the total energy which is larger than some parameter w
that can be arbitrarily chosen in the design of the control
law. Recalling the difficulty to predict the decay rate of
the energy of the closed-loop system for a given control
law [43,12,42], it is worth emphasizing that here not only
you can predict it but you can even impose a priori that
some suitable norm of the state be bounded by C(w)e
at any time ¢z, for any value of the design parameter .
Moreover this property holds uniformly with the modal
discretization [17] at the semi-discrete level. This control
algorithm may be considered as a special case of pole place-
ment algorithm, although the poles of the closed-loop sys-
tem are not specified during the control synthesis. It also
inherits the advantages of LQG-LTR approaches since
the control law is optimal for a non-standard criterium that
strongly involves the characteristics of the system to be
controlled and of the actuators.

But in view of investigating the behavior of the control
law numerically, we need a method of approximation both
for the computation of the control and for the simulation
of the controlled system. A major outcome of this paper
can be stated as follows: consider a structure controlled
by means of a displacement imposed on the boundary.
The standard way of extracting the pseudo-dynamical part
from the full response in order to solve a homogeneous
evolution equation leads to a discrete system which is
always unstable no matter the static linear control law
(the existence of a stabilizing dynamic feedback is proved
in [20])! This is in fact the main motivation for introducing
an ad hoc formulation for boundary control.

Besides, it was proved elsewhere [17] that a so-called
very weak in space formulation [18] leads to a discrete sys-
tem that inherits the stability of the continuous system con-
trolled with Komornik’s algorithm. We show here that the
same formulation also proves useful for a general LQR
strategy as well.

Therefore the purpose of this contribution is twofold:
first we promote a computational framework both for
control synthesis and simulation of flexible systems con-
trolled from the boundary. In particular this paper
improves on the relevance of the very weak in space for-
mulation used for the simulation (Section 3), and
describes a new high-level “black-box” implementation
of the proposed feedback. The relevance of both an unu-
sual formulation for the dynamics of structures and a
two-layer approximation of the controller equation is sub-
stantiated by numerical evidence in the case of a closed-
loop system. The computational framework differs from
[34,45].

A formal and general way of deriving the new formula-
tion from a more classical one at the discrete level is also
shown.

Second we assess numerically the efficiency of Komor-
nik’s feedback per se and in comparison with the IFF
strategy.

Third, we tackle the control spill-over strictly associated
with the possible lack of compatibility between boundary

control and initial conditions. This kind of spill-over does
not show up in practice and can be viewed as a purely
numerical artifact resulting from the oversimplification of
the control process modelling.

This paper builds upon and extends several existing con-
tributions [21,22,17,19] which are scattered in conference
proceedings.

This paper is organized as follows: Section 2 is devoted
to rephrasing Komornik’s control law in a suitable way in
view of computations. A simple Euler-Bernoulli-Navier
beam controlled at one end point, and an abstract system
in state-space form are considered. The computational
aspects of the theory are detailed in Section 3, at least
for beams. Section 4 describes various numerical tests
proving the efficiency of the numerical methods and con-
trol algorithm. The question of spill-over is addressed in
Section 5, where two simple smoothing techniques are
explained.

Finally, concluding remarks can be found in Section 6.

2. Rapid stabilization algorithm

This section owes much to [42]. However, the corre-
sponding control algorithms are expressed here in a varia-
tional setting in view of computations. Moreover, the
introduction of a fictitious time s for the control synthesis
in addition to the real time ¢ for the controlled system
seems to be useful.

2.1. Euler—Navier—Bernoulli beams

Let us consider a simply supported Euler-Navier—Ber-
noulli beam of length L (see Fig. 1). Let p, E, A, I denote
its mass density, Young’s modulus, cross-sectional area
and inertia respectively. For the sake of simplicity, the
mass density per unit length p4 and the stiffness E7 are sup-
posed to be constant along the beam. Moreover, damping
is not taken into account. Besides, many real-life structures
such as cables have no damping or even a negative damp-
ing in case of adverse wind—structure interaction. Therefore
it is fair to assess the effectiveness of control laws without
the help of any expected preexisting damping. However,
damping would comply with the theory [68,69] provided
observability holds and damping is not too large. It is
not clear that damping will always improve the perfor-
mance of the controller.
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Fig. 1. The mechanical system.
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