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a b s t r a c t

This paper presents a fast terminal sliding mode based control design strategy for a class of uncertain
underactuated nonlinear systems. Strategically, this development encompasses those electro-mechanical
underactuated systems which can be transformed into the so-called regular form. The novelty of the
proposed technique lies in the hierarchical development of a fast terminal sliding attractor design for the
considered class. Having established sliding mode along the designed manifold, the close loop dynamics
become finite time stable which, consequently, result in high precision. In addition, the adverse effects of
the chattering phenomenon are reduced via strong reachability condition and the robustness of the
system against uncertainties is confirmed theoretically. A simulation as well as experimental study of an
inverted pendulum is presented to demonstrate the applicability of the proposed technique.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

One of the fascinating area, in the existing era, is the control of
underactuated systems [1,2]. By definition, these systems are
governed by fewer number of control inputs than the degree of
freedom of the systems. In the context of importance, these sys-
tems are extensively used in the industry, for examples, under-
water vehicles, air vehicles and humanoid robotics. Therefore, a
wide number of researchers have devoted their efforts to acquire a
sound mechanism for the control of such important class of sys-
tems. These systems, as outlined in [3], can not be stabilized by
smooth feedback because the dynamics of this class are governed
by differential equations in the presence of some non-integrable
differential conditions [4,5]. Therefore, the control of this class is a
challenging problem. Moreover, the control techniques vary from
system to system for this class of dynamic systems and may not, in
general, be applied to the entire class. In the existing literature, a
wide number of approaches were used (see for instance, [7–14]) to
stabilize this type of systems.

Sliding mode control approach (see for detail, [15,16]), which is
famous for its robust nature against external and internal dis-
turbances, was developed in [17,18] for the aforesaid class. The

results developed by the aforementioned strategies were very
interesting and were capable for handling a class of uncertainties.
However, these techniques needed to have relative degree one
(see for definition, [19]) of the system with respect to their pro-
posed sliding manifolds. In addition, these techniques ensured
asymptotic regulation, of the system's states, to the origin. More-
over, some of these algorithms needed the introduction of virtual
disturbances to satisfy some conditions [17]. Some interesting re-
sults were presented in [20] for inverted pendulum and Furata
pendulum, where coupled sliding surfaces based sliding mode
strategy was devised. Very similar results, based on coupled slid-
ing surfaces, were proposed in [22] and a terminal sliding strategy
was proposed for the sliding mode enforcement. However, the
coupled sliding surface based control laws become very complex
in the presence of constraints related to each subsystem dynamics.
In addition, often one needs the deliberate introduction of virtual
disturbances in the system's dynamics which reduces the sig-
nificance of these strategies. The existing literature also contains
switching controller based strategies [23] which claims for finite
time enforcement of sliding modes. However, the state con-
vergence was asymptotic in nature which, consequently, resulted
in low precision. The main drawback of this strategy is that if the
hydrodynamics damping forces are nonlinear in nature then it will
result in an indefinite sign of the derivative of the Lyapunov
functions which results in the failure of the design procedure.

Currently, an output feedback second order sliding mode based
strategy is presented in [21] with good simulation results but the
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output is regulated to the respective origin asymptotically which intern
results in low precision. In addition, their procedure needs fourth order
differentiation of the designed output which once again will result in
substantial steady state error during experimental study.

In this work, the main objective is the finite time en-
forcement of sliding modes against a fast terminal attractor
which will results in finite time stabilization of the system's
states, suppression of the chattering phenomena and robust-
ness in the presence of unmodeled dynamics which are ever
demanding in the control of electro-mechanical systems. We
argue that the contributions of this article are nontrivial in
two major aspects. First, the hierarchical development of a
fast terminal sliding manifold and the control law design for
the underactuated electro-mechanical nonlinear systems. The
proposed control law results in the enforcement of sliding
mode, in finite time, against the designed fast terminal sliding
manifold which, consequently, ensures finite time regulation
of the system outputs to their desired points. Second con-
tribution is the experimental validation of the aforesaid
claims on the actual setup of an inverted pendulum. During
the design, the underactuated system's dynamics, in the first
step, are properly transformed into a regular form which
subdivides the whole dynamics into two sub blocks. The first
block is related to those states which are not directly affected
by the control inputs. The second block, on the other hand,
concerns with those dynamics which are directly driven by
the control input. The indirectly controlled states are finite
time stabilized by considering the directly controlled state as
a virtual control input into the said block. The finite time
stabilization results in more accuracy which is a clear benefit
of our proposed strategy over the other techniques being re-
ported earlier. Furthermore, the chattering across the
switching manifold, which is strongly associated with sliding
modes, is also suppressed/diminished. Note that, this newly
suggested control methodology encompasses those under-
actuated nonlinear systems which can be transformed into
regular form. One more aspect to highlight about the newly
proposed methodology is that this strategy is not limited to
underactuated systems. Any system transformable to regular
form, controllable canonical forms, and normal forms can be
controlled via our strategy in finite time. The rest of the paper
contains: In Section 2 the problem statement is presented,
Section 3 contains the general terminal attractor approach to
this class of dynamic systems. In the same section, the stabi-
lity of the proposed approach is presented. The cart pendulum
example is considered as an illustrative example and their
detailed simulation and experimental discussion is given is
Section 4. The last section encompasses concludes the paper.

2. Problem description

The dynamic equations of any mechanical systems (particu-
larly, underactuated systems), in general, are represented by a set
of interconnected second order differential equations of the fol-
lowing form

δ( ) ¨ + ( )̇ ̇ + ( ) + ( )̇ = ( + ( ̇ )) ( )J q q C q q q G q F q B u q q t, , , 1

where ∈q Rn and ̇ ∈q Rn are positions and velocities vectors which
make a configuration space of n2 variables/states, respectively.

( ) ∈ ×J q Rn n is the inertia matrix, ( )̇ ∈ ×C q q R, n n are centrifugal and
Coriolis forces, ( ) ∈ ×G q Rn 1 are gravitational forces, ( )̇ ∈ ×F q Rn 1 are
fractional forces and ( ) ∈ ×B q Rn m is the control input channel. Fur-
thermore, the controlled input ∈u Rm such that <m n. The term

δ ( )̇B q q, represents matched uncertainty due to unmodeled

dynamics and external disturbances that is assumed norm
bounded.

Remark 1. The proposed control design strategy can be employed
to a wide class of nonlinear systems like systems in controllable
canonical forms, output feedback linearizable systems i.e., normal
forms and regular forms. Therefore, this newly proposed metho-
dology is very significant in the nonlinear system's theory and can
be used easily where finite time stabilization or asymptotic sta-
bilization becomes the core objective.

Assumption 1. It is assumed that ( )−J q B1 is full rank matrix i.e.,

( ( ) ) =−rank J q B m1

Using nonlinear coordinate transformation of continuously
differentiable functions, the system in (1), is transformed into the
following set of second order differential equations the so-called
regular form [24]

Θ

Θ Φ Δ

¨ = ( ̇ ̇ )
¨ = ( ̇ ̇ ) + ( ) + ( ̇ ̇ ) ( )

E E E H H

H E E H H E H u E E H H t

, , ,

, , , , , , , , 2
1

2

where ∈ ( − )E R n m and ̇ ∈ ( − )E R n m represent, respectively, the posi-
tion and velocity vectors of the system which is not directly af-
fected the by applied control force u, ∈H Rm and ̇ ∈H Rm are the
position and velocity vectors of the system which are directly
under the influence of the applied control force,
Θ ( ̇ ̇ ) ∈E E H H R, , , m

2 , Φ ( ) ∈E H R, m are smooth vector fields, and
Δ( ̇ ̇ )E E H H t, , , , represents the matched uncertainties in the trans-
formed form. In order to proceed smoothly to the fast terminal
attractor (FTA) design, the following assumptions are furnished:

Assumption 2. It is assumed that the origin, in the state space of
the system, is an equilibrium point of the open loop system. In
other-words, Θ ( ) =0, 0, 0, 0 01 and Θ ( ) =0, 0, 0, 0 02

Assumption 3. The uncertainties term Δ( ̇ ̇ )E E H H, , , is assumed to
be norm bounded by a positive constant κ i.e.,

Δ κ| ( ̇ ̇ ) | ≤E E H H, , ,

Assumption 4. In order to meet the controllability condition, it is
assumed that Φ ( ) ≠Θ∂

∂ ̇ E H, 0
H

1 .

The control objective is to regulate to the origin, in finite time,
the states of the aforesaid two blocks in the presence of matched
uncertainties.

3. Main results: terminal attractor and control design

In this section, the regular form (2) is taken into account and a
step by step development, with different scenarios, is presented in
a comprehensive manner. During the overall development the
stability of the zero dynamics is kept at the top which lead to the
forthcoming cases.

3.1. Case-1

The first subsystem in (2) does not depend directly on the
control input while the second subsystem is directly driven by the
control input u. Therefore, the first system works as internal dy-
namics. The zero dynamics of this system, with H as an output, can
be obtained by substituting H¼0 and ̇ =H 0 in the internal dy-
namics block i.e.,

Θ¨ = ( ̇ ) ( )E E E, , 0, 0 31

If the system in (3) is stable asymptotically/exponentially, then,
the only task left is to stabilize the second block in (2). The finite
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