Contents lists available at ScienceDirect



Catalysis Communications



#### Short Communication

# Fluorine-modified Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO<sub>2</sub> hydrogenation to methanol



### Peng Gao<sup>a,b</sup>, Feng Li<sup>a</sup>, Haijuan Zhan<sup>a</sup>, Ning Zhao<sup>a</sup>, Fukui Xiao<sup>a</sup>, Wei Wei<sup>b,\*</sup>, Liangshu Zhong<sup>c</sup>, Yuhan Sun<sup>a,c,\*\*</sup>

<sup>a</sup> State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

<sup>b</sup> Center for Greenhouse Gas and Environmental Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China

<sup>c</sup> CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China

#### ARTICLE INFO

Article history: Received 7 November 2013 Received in revised form 17 January 2014 Accepted 6 March 2014 Available online 13 March 2014

Keywords: Hydrotalcite-like Fluorine Cu/Zn/Al/Zr catalyst CO<sub>2</sub> hydrogenation Methanol synthesis

#### ABSTRACT

Fluorine-modified Cu/Zn/Al/Zr catalysts were prepared by calcination of the fluorine-containing Cu/Zn/Al/Zr hydrotalcite-like compounds and tested for CO<sub>2</sub> hydrogenation to methanol. The results revealed that the CH<sub>3</sub>OH selectivity was greatly improved by the remarkable increase of the proportion of strongly basic sites, while the CO<sub>2</sub> conversion decreased slightly. It is also found that the activity of catalysts is closely related to the synergy between the Cu and basic sites. The CH<sub>3</sub>OH yield for the fluorine-modified Cu/Zn/Al/Zr catalysts was higher than that for the fluorine-free catalysts; thus, the introduction of fluorine favored the methanol formation.

© 2014 Elsevier B.V. All rights reserved.

#### 1. Introduction

As a cheap, nontoxic and abundant C1 feedstock, chemical utilization of CO<sub>2</sub> is a challenge and an important topic. The catalytic hydrogenation of CO<sub>2</sub> to methanol is one of the most effective and economical ways to fix and utilize a large amount of anthropogenic CO<sub>2</sub> because methanol is a starting material for several important chemicals and can be used as a fuel additive or clean fuel [1,2]. However, the conventional Cu/Zn/Al catalysts that are highly effective for methanol synthesis from syngas exhibit a poor activity for the hydrogenation of CO<sub>2</sub> [3,4]. The addition of a suitable amount of Zr can enhance the copper dispersion and the surface basicity of catalysts, which in turn improves the catalytic performance [5]. In addition, the nature of catalyst precursor also plays an important role for the structure and catalytic performance. Very recently, the hydrotalcite-like compounds (HTlcs) have been used as catalyst precursors for their advantages of homogeneous dispersion of metal cations at an atomic level, high stability against sintering and strongly basic properties [6,7].

In order to better understand and design the highly active catalysts for  $CO_2$  hydrogenation to methanol, the reaction mechanism has been widely investigated. For the Cu/Zn/Zr catalyst, a bi-functional mechanism

of CO<sub>2</sub> hydrogenation is currently accepted which assumes that the adsorption and dissociation of hydrogen occur on the Cu sites, while the adsorption of CO<sub>2</sub> takes place over the ZnO-ZrO<sub>2</sub> sites. The atomic hydrogen transports from the surface of Cu onto the surface of ZnO-ZrO<sub>2</sub> sites via spillover and hydrogenates the adsorbed carbon-containing species to form methanol [5,8–11]. Therefore, a highly exposed Cu surface area and appropriate adsorption amount and adsorption strength of CO<sub>2</sub> are favorable for the hydrogenation of CO<sub>2</sub>. In our previous work, the introduction of fluorine into Cu/Zn/Al catalyst could enhance the surface basicity, and then increased the CH<sub>3</sub>OH selectivity significantly [12]. Experimentally, the fluorine anions can be introduced into the interlayer region of HTIcs based on the so called memory effect [13,14]. As a result, it could be expected that the introduction of fluoride into Cu/Zn/Al/Zr catalysts via hydrotalcite-like (HTI) precursors will further improve the catalytic performance.

In this study, the fluorine-modified Cu/Zn/Al/Zr mixed oxides with  $Zr^{4+}/(Al^{3+}+Zr^{4+}) = 0.08$  and 0.24 were prepared by calcination of the fluorine-containing Cu/Zn/Al/Zr HTlcs and tested for CO<sub>2</sub> hydrogenation to methanol. The effect of the introduction of fluorine on the properties of the precursors and the catalysts was discussed.

#### 2. Experimental

#### 2.1. Preparation of catalysts

The Cu/Zn/Al/Zr hydrotalcite-like compounds with Cu<sup>2+</sup>:Zn<sup>2+</sup>:  $(Al^{3+}+Zr^{4+}) = 2:1:1$  were synthesized by a co-precipitation method

<sup>\*</sup> Corresponding author. Tel./fax: +86 351 4041153.

<sup>\*\*</sup> Correspondence to: Y. Sun, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. Tel./fax: +86 351 4041153.

E-mail addresses: weiwei@sari.ac.cn (W. Wei), yhsun@sxicc.ac.cn (Y. Sun).



Fig. 1. XRD patterns of the (a) precursors and (b) calcined samples, (•) CuO.

according to the literature [5]. Synthesized HTlcs were denoted as HTx-CO<sub>3</sub>, where x means the  $Zr^{4+}/(Al^{3+}+Zr^{4+})$  atomic ratio in the synthesis mixture and x = 0.08, 0.24, and corresponding calcined samples were denoted as CHTx-CO<sub>3</sub>.

The reconstructed forms of Cu/Zn/Al/Zr HTlcs with fluorine anions in the interlayer region were prepared according to the literature [14]. Briefly, the mixed metal oxides (CHTx-CO<sub>3</sub>) were treated separately with an aqueous solution of NaF under N<sub>2</sub> atmosphere for 48 h. To prevent CO<sub>2</sub> from contaminating the aqueous solution, the deionized decarbonated (DD) water was used. Then the resulting products were filtered, washed many times with the DD water and dried at 353 K under N<sub>2</sub> atmosphere. In this way, the fluorine-containing Cu/Zn/Al/Zr HTlcs were prepared and denoted as HTx-F. The obtained HTx-F samples were further calcined in an oven at 773 K for 4 h under flowing stream of pure N<sub>2</sub>. Then the fluorine-modified samples (CHTx-F) were obtained.

#### 2.2. Characterization of catalysts

The weight of fluorine in the samples was determined by ion-selective electrode analysis. XRD patterns were recorded on a Panalytical X'Pert Pro X-ray diffractometer with Cu  $K\alpha$  radiation. The surface area of catalysts was determined by N2 adsorption-desorption at liquid nitrogen temperature 77.30 K. The morphology of the samples was investigated using a Hitachi S-4800 scanning electron microscope (SEM) with an accelerating voltage of 20.0 kV. The dispersion of Cu  $(D_{Cu})$  and Cu surface area  $(S_{Cu})$ were determined by dissociative N<sub>2</sub>O adsorption and carried out on Micromeritics AutoChem 2920 instrument using the procedure described in our previous work [15]. X-ray photoelectron spectroscopy (XPS) measurements were performed over a Kratos XSAM800 spectrometer equipped with Al  $K\alpha$  radiation under ultrahigh vacuum ( $10^{-7}$  Pa). The binding energies were calibrated internally by adventitious carbon deposit C (1s) with  $E_b = 284.6$  eV. The basicity of the catalyst was measured by CO<sub>2</sub>-TPD. The catalyst was first reduced at 603 K in H<sub>2</sub> flow for 2 h. After cooling to room temperature, the catalyst was saturated with pure CO<sub>2</sub> at 323 K for 1 h, and then flushed with Ar flow to remove all physical adsorbed molecules. Afterward, the TPD experiment was started with a heating rate of 10 K min<sup>-1</sup> under Ar flow (40 mL min<sup>-1</sup>), and the desorbed CO<sub>2</sub> was detected by an AMETEK mass spectrometer.

#### 2.3. Evaluation of catalysts

Catalytic performance for hydrogenation of CO<sub>2</sub> was carried out in a fixed-bed reactor. Catalyst (1.5 mL, 40–60 mesh) diluted with 1.5 mL quartz sand was placed in a stainless steel tube reactor. Prior to reaction, the catalyst was reduced in pure H<sub>2</sub> at 603 K for 8 h under atmospheric pressure. After reduction, CO<sub>2</sub> hydrogenation test was determined under reaction conditions of 523 K, 5.0 MPa,  $n(H_2):n(CO_2) = 3:1$ , GHSV = 4000 h<sup>-1</sup>. Products were quantitative analyzed with gas chromatograph. The CO<sub>2</sub> conversion and the carbon-based selectivity were calculated by an internal normalization method.

#### 3. Results and discussion

#### 3.1. Textural and structural properties

As shown in Fig. 1a, the XRD patterns of all precursors were typical for hydrotalcite-like structures, indicating that the HTx-CO<sub>3</sub> and HTx-F were successfully prepared. The patterns of the reconstructed HTx-F samples displayed much higher and sharper basal peaks compared to that of HTx-CO<sub>3</sub>. The apparent increase of the crystallinity upon reconstruction could be explained by a partial recrystallization of the amorphous phase existing in the mixed oxides forms [16]. For HTx-F, some extent of the CuO-like phase was also detected, indicating that some Cu<sup>2+</sup> ions did not enter the layered structures during the reconstruction process. The crystallographic parameters *a* and *c* were calculated by assuming a hexagonal crystal system for samples and the results were listed in Table 1. In comparison with HTx-CO<sub>3</sub>, HTx-F showed an increase in *c* with slight decrease in *a*. The increase in *c* value could be ascribed to the less

| Table 1             |                 |                |          |          |
|---------------------|-----------------|----------------|----------|----------|
| Physicochemical pro | perties and XPS | results of the | calcined | samples. |

| Sample      | a <sup>a</sup> | c <sup>a</sup> | F content | S <sub>BET</sub> | S <sub>Cu</sub> | D <sub>Cu</sub> | Binding energy (eV)  |                      |       |                      |                      |       |
|-------------|----------------|----------------|-----------|------------------|-----------------|-----------------|----------------------|----------------------|-------|----------------------|----------------------|-------|
|             | (Å)            | (Å)            | (g/100g)  | $(m^2 g^{-1})$   | $(m^2 g^{-1})$  | (%)             | Cu 2p <sub>3/2</sub> | Zn 2p <sub>3/2</sub> | Al 2p | Zr 3d <sub>3/2</sub> | Zr 3d <sub>5/2</sub> | F 1s  |
| CHT0.08-CO3 | 3.082          | 22.75          | 0         | 61               | 30.4            | 9.86            | 933.8                | 1021.2               | 73.8  | 183.7                | 181.4                | -     |
| CHT0.24-CO3 | 3.086          | 22.76          | 0         | 69               | 35.1            | 12.17           | 933.8                | 1021.2               | 73.7  | 183.8                | 181.5                | -     |
| CHT0.08-F   | 3.081          | 22.92          | 0.77      | 29               | 19.4            | 6.33            | 933.7                | 1021.4               | 74.1  | 184.1                | 181.7                | 684.4 |
| CHT0.24-F   | 3.082          | 22.86          | 0.59      | 38               | 22.2            | 7.69            | 933.7                | 1021.4               | 74.1  | 184.0                | 181.7                | 684.3 |

<sup>a</sup> As-prepared HTl precursors.

Download English Version:

## https://daneshyari.com/en/article/50041

Download Persian Version:

https://daneshyari.com/article/50041

Daneshyari.com