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In this paper first the Multi-term Fractional-Order PID (MFOPID) whose transfer function is equal to
2?’:1 ki, where k; and @; are unknown and known real parameters respectively, is introduced. Without
any loss of generality, a special form of MFOPID with transfer function k;, + k;/s + kg5 + kg,s* where kp, ki,
k41, and kg, are unknown real and p is a known positive real parameter, is considered. Similar to PID and
TID, MFOPID is also linear in its parameters which makes it possible to study all of them in a same
framework. Tuning the parameters of PID, TID, and MFOPID based on loop shaping using Linear Matrix
Inequalities (LMlIs) is discussed. For this purpose separate LMIs for closed-loop stability (of sufficient
type) and adjusting different aspects of the open-loop frequency response are developed. The proposed
LMIs for stability are obtained based on the Nyquist stability theorem and can be applied to both integer
and fractional-order (not necessarily commensurate) processes which are either stable or have one
unstable pole. Numerical simulations show that the performance of the four-variable MFOPID can

compete the trivial five-variable FOPID and often excels PID and TID.

© 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Fractional-order PID (FOPID) was introduced in 1999 by Po-
dlubny as a generalization of trivial PID controllers [1]. The
transfer function of the ideal FOPID, also known as PF'D*, is defined
as [1]:

Cropip(s) = kp, + f—; + kys”, o
where k, k;, ky€R and 4, 4 € R* are unknown parameters of
controller to be tuned. See, for example, [2] for the possible time-
domain interpretations of the fractional powers of s in (1) and
their properties. Considering the fact that FOPID has five para-
meters to tune, two more than the classical PID, it is expected that
it leads to a higher performance compared to PID especially in
dealing with problems with complicated control objectives [3].
Various successful applications of FOPID controllers have been
reported in the literature. Some examples are motion control [4],
unmanned aerial vehicle [5], path tracking control of tractors [6],
and control of a solar furnace [7]. FOPID controllers can be realized
using either analogue [8,9] or digital techniques [10,11].

Another fractional-order controller which is closely related to
FOPID and discussed in this paper is the Tilt-Integral-Derivative
(TID). The transfer function of TID is defined as [12]:
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Gip(s) = s’% + % +kys, @
where again kg, k;, and k; are unknown real parameters to be
calculated, and n is an unknown positive integer often considered
equal to 2 or 3 before tuning other parameters [12]. Some prop-
erties of TID have been studied in [13]. A method for tuning its
parameters is also presented therein.

So far, a wide variety of techniques have been proposed for
tuning the parameters of FOPID. For example, tuning the para-
meters based on open-loop shaping [14,3], Bode's ideal transfer
function [15,16], minimization of performance indices like ISE and
IAE [17,18], optimization of load disturbance subject to a con-
straint on the maximum sensitivity (M) [19], simultaneous ad-
justment of phase and gain margin to the desired values [20], and
fractional-order root-locus method [21] can be found in the lit-
erature. Some of these methods like those presented in [17] and
[18] lead to explicit tuning rules which can be applied to first-or-
der plus time delay (FOPTD) or integrator plus dead time (IPDT) or
unstable first-order plus dead-time (UFOPDT) processes. It is
worth mentioning that almost all of the methods developed so far
for tuning FOPID controllers are based on solving a kind of opti-
mization problem. Some researchers have used meta-heuristic
optimization algorithms for solving such problems; see for ex-
ample [22-24].

During the past decades many control problems have been
successfully formulated as convex optimization problems
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involving Linear Matrix Inequalities (LMIs) [25]. Recently, some
researchers have applied LMIs for stability analysis and controller
synthesis for fractional-order systems (FOS). For example, LMI
approach for stability analysis of a system governed by the state-
space equation D'x(t) = Ax(t) where D" is a fractional-order deri-
vative operator, A € R™", x(t) e R" and 0 < v < 2 is presented in
[26]. LMI-based sufficient conditions for robust stability and sta-
bilization of linear time-invariant FOS are presented in [27]. In the
field of synthesis of control laws, pseudo-state feedback stabili-
zation of commensurate FOS [28] and H_, output feedback control
of commensurate FOS [29], both using LMIs, are reported in the
literature. LMIs for calculating the bounds on the norms of FOS are
presented in [30].

The aim of this paper is to propose a method for tuning a kind
of FOPID using LMIs. For this purpose first a new fractional-order
controller which is defined by adding a fractional differentiator of
fixed order to the classical PID, is introduced. Then LMIs for
shaping the open-loop frequency response when the proposed
controller is applied are developed. The proposed approach makes
it possible to use advantages of convex optimization and frac-
tional-order operators to solve a control problem.

The rest of this paper is organized as the following. The main
results including the proposed structure for fractional-order con-
troller and the corresponding LMIs for open-loop shaping are
presented in Section 2. Four illustrative examples are presented in
Section 3, and Section 4 concludes the paper.

2. Multi-term FOPID: definition and tuning

In this section first the multi-term FOPID (MFOPID) is in-
troduced. Then separate LMIs for closed-loop stability (of sufficient
type), adjustment of phase margin (PM), adjustment of only the
open-loop phase, and adjustment of only the open-loop gain are
presented. In practice, the user can apply the LMIs for stability in
combination with any of the other LMIs to design the controller by
loop shaping. At the end of this section another approach for
controller design which is also based on LMIs and applicable to
higher order and time-delayed processes with one unstable pole is
presented.

2.1. The proposed multi-term FOPID
Before introducing the MFOPID controller first note that unlike
FOPID, PID and TID (assuming a fixed value for n in (2)) are linear
in their parameters. More precisely, considering the vector of
unknown parameters as
T
X=[kykiky] . 3)

the classical ideal PID can be expressed as

k; _
Cop(s) =k, + ?’ + kgs = [1 s 1s]X = Wpp(s)X,

“)
which is linear in X. Similarly, assuming
X =[kek kd]T, 6))
the TID defined in (2) can be expressed as
Gip(s) = [s‘” ”s‘ls]X = Wyp(s)X, ©)

which again assuming a certain value for n is linear in X. But the
FOPID given in (1) cannot be expressed in the same way unless the
values of A and u are assumed to be fixed in advance. The possi-
bility of writing a controller with transfer function C(s) in the form
of C(s) = W(s)X, where W(s) and X are the known weights and the

unknown parameters vectors, respectively, is an advantage since it
makes it possible to calculate X through LMIs and convex opti-
mization algorithms as it will be discussed in the following. The
above discussion motivates us to present a new definition for
FOPID controller which is firstly linear in the vector of tuning
parameters, and secondly, has more tuning parameters compared
to PID and can mimic the performance of traditional FOPID de-
fined in (1).

According to the above discussion the transfer function of
MFOPID is defined as

N
Curorin(S) 2 Y ks = [ 5152 sNIX = Wygropin(5)X, -
j=1

where q, ..., @y are known real constants, and
X =[ky...ky]', ®
is the vector of real unknown parameters, and
Witropip(s) = [ 57152...s°V], €))

is the weights vector which is known at each frequency.
Without any loss of generality, a special form of (7) as given in
(10) is used in the numerical examples of this paper:

k;
Curorip®) = Ky + ?' + kgis + kgps”, 10

where 0 < u < 2 is a pre-determined positive real constant and the

vector of unknown parameters is X = [kp k; kg kdz]T. The controller
in (10) can be though of as a PID accompanied with an extra
fractional-order derivative operator. The reason for being inter-
ested in this controller is that the traditional integrator 1/s is
sufficient for many applications while there is often a need for an
extra phase lead which can be achieved by the term kg,s" in (10).
Note that in practice the order of integrator, 4, in (1) is often
considered larger than or equal to unity since application of A's
smaller than unity leads to very slow convergence of the closed-
loop step response to its final value, which is not desired. In the
rest of this paper the transfer function of controller is considered
as C(s) = W(s)X for some W(s) and X.

2.2. LMiIs for closed-loop stability (stable process)

Consider the feedback system shown in Fig. 1 where here P(s) is
assumed to be stable. In this case it is concluded from the Nyquist
stability theorem that the closed-loop system is also stable if and
only if the Nyquist plot of L(s) = C(s)P(s) = W(s)XP(s) does not
encircle —1. Clearly, infinity many different Nyquist plots can be
drawn which satisfy this condition. Fig. 2 shows a common ap-
proach to achieve closed-loop stability in this case where the
Nyquist plot lies in the lower (upper) half-plane at all frequencies
smaller (larger) than the phase crossover frequency, @, and at
o = wp. We have Re{L(jo,)} > — 1 and Im{L(jw,,)} = 0. According
to this figure the sufficient condition for closed-loop stability is the
simultaneous satisfaction of (11)-(13):

Im{L(jw)} <0,0§w<wpc, an

Re{l(jw,)} > -1 A Im{L(jw,)} =0, 12)

(@) e Co WX u(®) P6) y(i)

Fig. 1. The closed-loop system under consideration.
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