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a b s t r a c t

This paper is concerned with the problems of finite-time stability and stabilization for stochastic Markov
systems with mode-dependent time-delays. In order to reduce conservatism, a mode-dependent ap-
proach is utilized. Based on the derived stability conditions, state-feedback controller and observer-based
controller are designed, respectively. A new N-mode algorithm is given to obtain the maximum value of
time-delay. Finally, an example is used to show the merit of the proposed results.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Markov jump systems have been widely studied due to their
widely practical applications in economic systems [1], power
systems [2] and so on. A great deal of results on such class of
systems have been obtained, e.g., [3–9]. And also, time-delay is
often encountered in practical process, such as communication
systems [10] and networked control systems [11,12]. Considering
the above practical phenomena, a class of more general model of
Markov jump systems with time-delays have been paid more at-
tention gradually. Many interesting results have been obtained for
this kind of systems. For example, [13] gave some sufficient con-
ditions for stochastic stability of Markov jump systems with time-
delay and partially known transition probabilities. The stability of
delayed recurrent neural networks with impulse control and
Markovian jump parameters was investigated in [14]. The litera-
ture [15] addressed ∞ performance analysis problem for singular
Markov jump delayed systems with polyhedral parameter un-
certainties and [16] investigated delayed state feedback

stabilization of uncertain Markovian jump linear systems with
random Markov delays.

Recently, finite-time stability has also received increasing at-
tention and been found some applications in practical process,
such as, avoiding saturation or the excitation of nonlinear dy-
namics during the transient [17]. The concept of finite-time sta-
bility was first introduced in the 1950s and played an important
role in addressing transient performances of control systems.
Roughly speaking, a system is said to be finite-time stable if for a
given time-interval [ ]T0, , its states can not exceed a specified
bound in the time interval [18]. Many interesting results have been
obtained for this type of stability. For example, [19] investigated
the problems of finite-time stability and stabilization for Itô sto-
chastic system and [20] addressed finite-time stochastic con-
tractive bounded-ness of Markovian jump systems. The literature
[21] studied observer-based state feedback finite-time control for
nonlinear jump systems with time-delay. and [22] investigated
finite-time ∞ control for Markovian jump systems with mode-
dependent time-varying delays.

Although several interesting results on the problems of finite-
time stability and stabilization have been reported, it has not yet
been fully investigated for Markovian jump systems with mode-
dependent time-delays. In these works, a key method is to con-
struct the following inequality [20–22]

α[ ′( ) ( )] < [ ′( ) ( )] ( )
d x t P x t

dt
x t P x t , 1
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where only Pi is mode-dependent, while α is common to all
modes. This implies α should satisfy inequality (1) for all modes,
which probably results in some conservative conditions. If α is also
mode-dependent, some less conservative conditions may be ob-
tained. This is because mode-dependent α, that is αi, is more
flexible than the common one. Here, we call this approach mode-
dependent approach(MDA). On the other hand, in these works,
there is nearly no literatures to investigate the problems of finite-
time stability and stabilization on Itô stochastic Markovian jump
systems with mode-dependent time-delays.

Motivated by aforementioned discussions, we use a mode-de-
pendent approach to study the problems of finite-time stability
and stabilization for Itô stochastic Markov jump systems with
mode-dependent time-delays. The system model addressed is
more complex than those in existing literatures, which results in
the difficulty of stability analysis and controller design. By utilizing
stochastic analysis technology, a stability condition and some
stabilizing conditions are derived. The main contributions of this
paper are as follows. 1) The definition of finite-time stability is
extended to the model of Itô stochastic Markov jump systems with
mode-dependent time-delays. 2) A stability condition and two
new sufficient conditions of the existence for state feedback and
observer-based controllers are given by a mode-dependent ap-
proach, which are of less conservativeness. 3) A new N-mode al-
gorithm is provided for obtaining the maximum value of time-
delay.

The structure of this paper is organized as follows. In Section 2,
we give some preliminaries and the definitions of finite-time
stability and stabilization. In Section 3, a finite-time stability
condition is given. Section 4 provides some sufficient conditions
for the existence of a state feedback and a observer-based con-
troller. Section 5 gives an algorithm to obtain the maximum value
of time-delay. An example is employed to illustrate the results in
Section 6.

Notations: ′X stands for transpose of a matrix X. The notation
>Q 0 means that Q is positive definite. λ λ( )( ( ))X Xmax min re-

presents the maximum (minimum) eigenvalue of a matrix X. ×In n

stands for ×n n identity matrix.  [ ]X denotes the expectation of X.
We use the asterisk * in a matrix to represent the term which is
induced by symmetry. The “wrt” is an abbreviation of “with respect
to”.

2. Definitions and preliminaries

Let w(t) be a scalar Brownian motion defined on the probability
space (Ω,  , P). Let rt be a right-continuous Markov chain with the
state space Γ = { … }N1, 2, , and the transition rate matrix
π π= [ ] ×ij N N . We assume that rt is independent of w(t) and has the
following transition probability

⎪

⎪⎧⎨
⎩

π
π

{ = | = } =
▵ + (▵ ) ≠
+ ▵ + (▵ ) =+▵P r j r i

t o t i j

t o t i j

, ,

1 , ,
t t t

ij

ij

where ▵ >t 0, πij is the stationary transition rate from mode i to
mode j, which satisfies π > 0ij , ≠i j and π π= − ∑ = ≠ii j i j

N
ij1, . t

stands for the smallest s-algebra generated by w(s), r(s), ≤ ≤s t0 ,
i.e.,  σ= { ( ) ( )| ≤ ≤ }w s r s s t, 0t .

Consider the following Itô stochastic Markov system with
mode-dependent time-delays
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where ( ) ∈x t n, ( ) ∈u t m, and ( ) ∈y t p are state, control input
and measurement output, respectively. For =r it , ( )A rt , ( )A rt1 , ( )A rt ,

( )A rt1 , ( )B rt , ( )B rt are constant matrices of compatible dimensions,
denoted by Ai, A1i Ai, A i1 , Bi, Bi for simplicity. φ ( )t is a initial
function and the scalar >h 0 denotes an unknown system delay.

Next, the definition of finite-time stochastic stability for Itô
stochastic Markov system with mode-dependent time-delays is
introduced.

Definition 1. Given positive real scalars c1, c2, T with < <c c0 1 2,
and a positive definite matrix R, the system (2) is said to be finite-
time stochastically stable(FTSS) wrt (c1, c2, T, R), if

{ ′( ) ( )} ≤ ⇒ [ ′( ) ( )] < ∈ [ ]
− ≤ ≤

x t Rx t c x t Rx t c t Tsup , 0, .
h t 0

0 0 1 2
0

Remark 1. Definition 1 can be described as following: if a given
bound on the initial condition, a fixed time interval and R¼ I, the
expected value of state trajectories of system (2) is required to
remain in a certain domain during this time interval. A two-di-
mensional case of Definition 1 is illustrated by Fig. 1. A point A lies
in the shaped area. The trajectory starting from A can not escape
the domain of radius of c2 during the time interval [ ]T0, .

Remark 2. Finite-time stochastic stability requires the expected
values of the states not to exceed a given bound in finite-time
interval, which is different from mean square asymptotic stability
[23]. A system that is mean square asymptotically stable may be
not FTSS, if the expected values of its states exceed a given upper
bound, and vice versa.

Next, consider the Itô stochastic Markov controlled systemwith
mode-dependent time-delays
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On the basis of Definition 1, the definition of finite-time stochastic
stabilization can be given as follows.

Definition 2. System (3) is said to be finite-time stochastically
stabilizable if there exists a feedback control law *( )u t , such that

( ) = [ ( ) ( ) + ( ) ( − ( )) + ( ) *( )]

+ [ ( ) ( ) + ( ) ( − ( )) + ( ) *( )] ( ) ( )

dx t A r x t A r x t h r B r u t dt

A r x t A r x t h r B r u t dw t 4

t t t t

t t t t

1

1

is finite-time stochastically stable wrt (c1, c2, T, R).

The following lemma will be used in the next section.

Fig. 1. Illustration of FTS.
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