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a b s t r a c t

When addressing the problem of state estimation in sensor networks, the effects of communications on
estimator performance are often neglected. High accuracy requires a high sampling rate, but this leads to
higher channel load and longer delays, which in turn worsens estimation performance. This paper stu-
dies the problem of determining the optimal sampling rate for state estimation in sensor networks from
a theoretical perspective that takes into account traffic generation, a model of network behaviour and the
effect of delays. Some theoretical results about Riccati and Lyapunov equations applied to sampled
systems are derived, and a solution was obtained for the ideal case of perfect sensor information. This
result is also interesting for non-ideal sensors, as in some cases it works as an upper bound of the
optimisation solution.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Research on Networked Control Systems (NCS) and wireless
sensor networks is often aimed at optimising network resources
[1]. One important area of research focuses on reducing the
amount of messages transmitted through the network [2–4] in
order to save power and avoid degradation of the communication
channel caused by high occupation. Ironically, most of these stu-
dies assume ideal communications between the system elements.

The effects of non-ideal communication on estimation over
sensor networks, due to packet delays and/or packet loss, and how
to deal with them, have been extensively studied in isolation [5–10].
Additionally, the dependency between traffic load, message delay
and packet loss has been studied using computer network models
[11–13], which belong to an entirely different field of engineering.

In short, sensors create traffic, the traffic induces a network
delay, and the delayed measurements have an impact on estima-
tion performance. While these three effects are normally studied
separately, they should be addressed in conjunction in order to
design transmission policies that achieve the desired performance.

Bringing this idea back to the context of optimisation problems

in sensor networks, the classical approach is to optimise a cost
function where, among other things, a given cost is assigned to
measurement transmissions [14–16]. This cost is set according to
the undesired effects caused by transmitting too many samples.
Usually, however, low occupancy is not the main objective. Often
the real objective is to achieve high estimation accuracy, and
measurement delay is simply a consequence and a hurdle that
negatively affects the estimates.

In this classical approach, if we wish to obtain the best possible
accuracy regardless of the amount of samples, we would favour
the error cost over the transmission cost. However, this would not
work because it would increase the transmission rate at the ex-
pense of increasing the network load, as more information from
the sensors is required. The consequence would be higher con-
gestion in the channel and longer sample delays, which in turn
would lead to poor performance.

This paper studies the problem of determining an optimal sam-
pling rate for estimation in terms of the Mean Squared Error (MSE),
taking into account the traffic generated by the sensors and the ne-
gative effects of the delayed measurements caused by this traffic. As a
first approach to the problem, we assume a linear system and periodic
sampling. This is reasonable since studies of the infinite horizon sensor
scheduling problem have concluded that the solutions are periodic
[15]. The network topology is obviated and we assume a centralised
Kalman filter, which gives an optimal estimation.
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1.1. Notation

The following notation is used in this paper: + is the set of all
positive real numbers. ′X is the transpose of X and Xtr is the matrix
trace. The ○sign denotes function composition, i.e. ◦ ( ) =f g x f ( )( )g x .

>X 0 means X is positive-definite. If ≥ is used instead, then it is
positive-semidefinite. Accordingly, >X Y means − >X Y 0.

2. Background

The plant model of the system we want to estimate is given by
a set of linear differential equations

̇( ) = ( ) + ( ) ( )x t Ax t w t 1

where ( ) ∈x t n is the state vector, ∈ ×A n n is the system matrix
and ( ) ∈w t n is the system noise. The system noise is modelled as
a Gaussian process with zero mean and covariance matrix

⎡⎣ ⎤⎦τ δ τ( ) ( )′ = ( − ) ( )E w t w S t 2

where ∈ ≥×S S, 0n n and δ(·) is the Dirac delta. The system model
(1) may include an input term Bu, but since this does not affect
computation of the estimation covariance matrices, we will con-
sider a system with no inputs.

2.1. Sampled systems

The sensor network obtains measurements ∈yk
m at time

instants =t kTk , where T is the sampling time, ∈ +T , and ∈k .
We assume that this sampling time can be adjusted at the sensor,
and that it has a minimum value given by technological
limitations.

The equation of the output is

( )= + ( )y Hx kT v 3k k

where ∈ ×H m n is the output matrix and ∈vk
m is the mea-

surement noise. The noise is assumed to be an uncorrelated
Gaussian process whose covariance matrix is

⎡⎣ ⎤⎦′ = ∈ > ( )×E v v R R R; , 0 . 4k k
m m

According to the value of T, the system must be transformed
into a discrete-time system. The solution of the differential equa-
tion (1), given an initial condition ( ) =x t x0 0, is

∫( ) ( ) ( ) τ τ= + ( )
( )

τ− −x t e x e w d .
5

A t t

t

t
A t

0
0

0

The above equation is equivalent to

( ) ( ) ( )+ Δ = + ¯ ( )Δ Δx t t F x t w t 6t t0 0 0

where

= ( )Δ
ΔF e 7t

A t

is the transition matrix and

∫( ) ( ) τ τ¯ = ( )
( )

τ
Δ

+Δ
+Δ −w t e w d

8t
t

t t
A t t

0
0

0
0

is the equivalent discrete-time noise.
Hence, (6) can be converted to a recursive equation using

Δ =t T . This yields the difference equation of a discrete system for
any chosen T.

( )( + ) = ( ) + ¯ ( ) ( )x k T F x kT w kT1 9T T

As w is stationary, so is w̄T , and its covariance matrix is

⎡⎣ ⎤⎦ ∫ τ¯ ( ) ¯ ( )′ = = ( )
τ τ′E w t w t Q e Se d . 10T T T

T
A A

0

For a comprehensive discussion on how to compute the dis-
crete system matrix FT using numerical methods, see [17]. A fairly
simple method for computing QT exists [18], which transforms the
problem into solving Lyapunov equations.

Once we have a discrete-time system, we can obtain an esti-
mation of the state vector x̂ using a discrete-time Kalman filter,
which is the optimal estimator in terms of the MSE. When a
sample is received, the estimation error covariance matrix

[( )( ) ]= − ^ − ^ ′P E x x x x is updated.
Let g be the operator that performs the measurement update

on P:

( )( ) = ( ) ( )+ −P kT g P kT 11

where −P and +P are the a priori and the a posteriori values of the
covariance. Function g is defined as

( )( ) = − ′ ′ + ( )
−

g X X XH HXH R HX . 12
1

In between measurements, P evolves according to the Con-
tinuous-time Differential Lyapunov Equation (CDLE).

(̇ ) = ( ) + ( ) ′ + ( )P t AP t P t A S 13

Again, the solution of this equation, for a given initial condition
( )=P P t0 0 , is

( ) = ′ + ( )− − −P t F P F Q . 14t t t t t t00 0 0

Let operator Δh t be the propagation of the covariance during
prediction over Δt seconds.

( ) = ′ + ( )Δ Δ Δ Δh X F XF Q 15t t t t

A nice property of this operator is that

( ) = ◦ ( ) = ◦ ( ) ( )+h X h h X h h X . 16t t t t t t1 2 1 2 2 1

Then, the prediction stage of the estimator is computed with
the formula

( )( )( + ) = ( ) ( )
− +P k T h P kT1 . 17T

The steady-state estimation error covariance matrix P̄T of the
filter is the solution of the equation ( )¯ = ◦ ¯P h g PT T T , yielding the
Discrete-time Algebraic Riccati Equation (DARE).

( )¯ = ¯ ′ − ¯ ′ ¯ ′ + ¯ ′ + ( )
−

P F P F F P H HP H R HP F Q 18T T T T T T T T T T
1

Having determined P̄T , we can also define

( )¯ = ¯ ( )
+

P g P 19T T

as the a posteriori steady-state estimation error covariance matrix,
which is in turn the solution of the equation ( )¯ = ◦ ¯+ +

P g h PT T T .

The solution P̄T of the DARE (18) corresponds to a specific
sampling period T since the transition matrix and the equivalent
discrete noise covariance must be computed for each value of T.
This means that we can think of P̄T as a function of T. Such a
function does not have a mathematical expression in closed form,
and to the best of our knowledge, its properties have not been
studied in the literature.

3. Problem description

It is usual to assume that increasing the sensor sampling rate
will improve the performance of the remote estimator. However,
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