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a b s t r a c t

In this paper we obtain sufficient conditions for practical stability of a nonlinear system of differential
equations of fractional order subject to impulse effects. Our results provide a design method of impulsive
control law which practically stabilizes the impulse free fractional-order system.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Impulsive control arises naturally in a wide variety of applica-
tions. Various good impulsive control approaches for integer-order
systems have been proposed in many fields such as neural net-
works [1,2], ecosystems management [3,4], epidemic models [5],
financial models [6,7], etc. There are many cases where impulsive
control can give better performance than continuous control.
Sometimes even only impulsive control can be used for control
purpose. The centrality of impulsive control strategies for theory
and applications is witnessed by the current persistency of new
contributions in this topic of interest [8–10].

On the other hand, fractional-order models are found to be more
adequate than integer-order models, and there has been a sig-
nificant development in the theory of fractional differential systems
(FDSs) in the last years. For examples and details, see [11–13].

The explosion in research within the FDSs setting led to new
developments in their qualitative theories. Also, in relation to the
mathematical simulation in chaos, fluid dynamics and many physical
systems, only relatively recently impulsive FDSs have started to
receive an increasing interest [14–18]. Fractional calculus was intro-
duced to the stability analysis of such systems, where integer-order
methods were extended to fractional-order dynamic systems. See, for
example, [19] and the references therein. However, the studies of
impulsive FDSs mainly focus on the stability or asymptotic stability in

the Lyapunov sense. In addition, few theoretical studies on impulsive
synchronization and control of fractional-order systems are reported
in the literature. The stability of impulsive fractional-order systems is
investigated by employing Gronwal–Bellman's inequality in [20], and
an impulsive synchronization criterion of fractional-order chaotic
systems is obtained. In [21], a pinning impulsive control scheme is
adopted to investigate the synchronization of fractional complex
dynamical networks. The paper [22] studies optimal relaxed controls
and relaxation of nonlinear fractional impulsive evolution equations.
The paper [23] is concerned with feedback control systems governed
by fractional impulsive evolution equations involving Riemann–
Liouville derivatives in reflexive Banach spaces. The authors of [24]
proposed an impulsive control scheme for fractional-order chaotic
systems which is based on the Takagi–Sugeno fuzzy model and linear
matrix inequalities. However, in spite of the great possibilities for
applications, the stability and control theories of impulsive FDSs have
not yet been fully developed and this paper's aim is mainly to fill
the gap.

One of the most important aspects of the stability theory of
differential equations is the so-called practical stability. The notion
of practical stability of dynamical systems was first discussed by
Lasalle and Lefshetz [25] in 1960s and since then a great progress
has been made [26–29]. The main problem in the theory of prac-
tical stability consists of studying the solutions of systems of dif-
ferential equations close to a certain state, given in advance the
domain where the initial conditions change, and the domain
where the solutions should remain when the independent variable
changes over a fixed interval (finite or infinite). The desired state
of a system may be unstable in the sense of Lyapunov and yet a

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/isatrans

ISA Transactions

http://dx.doi.org/10.1016/j.isatra.2016.05.012
0019-0578/& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.:þ1 210 458 6103.
E-mail addresses: ivanka.stamova@utsa.edu (I. Stamova),

johnny_henderson@baylor.edu (J. Henderson).

ISA Transactions 64 (2016) 77–85

www.sciencedirect.com/science/journal/00190578
www.elsevier.com/locate/isatrans
http://dx.doi.org/10.1016/j.isatra.2016.05.012
http://dx.doi.org/10.1016/j.isatra.2016.05.012
http://dx.doi.org/10.1016/j.isatra.2016.05.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2016.05.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2016.05.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2016.05.012&domain=pdf
mailto:ivanka.stamova@utsa.edu
mailto:johnny_henderson@baylor.edu
http://dx.doi.org/10.1016/j.isatra.2016.05.012


solution of the system may oscillate sufficiently near this state that
its performance is acceptable. As such, practical stability and the
Lyapunov stability are quite independent concepts, and, in general,
neither imply nor exclude each other. In some cases, though a
system is stable or asymptotically stable in the Lyapunov sense, it
is actually useless in practice because of undesirable transient
characteristics (e.g., the stability domain or the attraction domain
is not large enough to allow the desired deviation to cancel out).
The notion of practical stabilization is of a significant importance
in scientific and practical engineering problems [30,31]. For
example, it is very useful in estimating the worst-case transient
and steady-state responses and in verifying pointwise in time
constraints imposed on the state trajectories.

However, very little work has been done in practical stability
analysis of fractional order system. The initial time difference
practical stability has been investigated in terms of two measures
for FDSs without impulsive perturbations in [32]. To the best of our
knowledge, there has not been any work so far considering the
practical stability of fractional impulsive control systems, which is
very important in theories and applications and also is a very
challenging problem.

In this paper, motivated by the above considerations, we gen-
eralize the concept of the practical stability to an impulsive control
system of fractional order with Caputo fractional derivative. Using
the fractional comparison principle proved in [19], we investigate
the effect of the impulses on the practical stabilization of the system
under consideration. Scalar and vector Lyapunov-like functions are
also used to derive practical stability criteria for the impulsive
control fractional differential system. Applications to linear and
non-linear systems are discussed to illustrate the theory.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space with norm j j � j j ,
Ω be an open set in Rn containing the origin, and let Rþ ¼ ½0;1Þ.
Let t0ARþ .

Definition 2.1 ([12,19]). For any tZt0, the Caputo fractional deri-
vative of order q, 0oqo1, with the lower limit t0 for a function
lAC1½½t0; b�;Rn�, b4t0, is defined as

t0
cDq

t lðtÞ ¼
1

Γð1�qÞ
Z t

t0

l0ðsÞ
ðt�sÞqds:

Here and in what follows Γ denotes the Gamma function.

We consider the following fractional-order impulsive control
system

t0
cDq

t xðtÞ ¼ f ðt; xðtÞÞþηðtÞ; t4t0; ð2:1Þ
where

ηðtÞ ¼
X1
k ¼ 1

IkðxðtÞÞδðt�tkÞ; ð2:2Þ

is the control input, δðtÞ is the Dirac impulsive function with dis-
continuity points

t0ot1ot2o⋯otko⋯

and limk-1tk ¼1, x : ½t0;1Þ-Rn; f : ½t0;1Þ �Ω-Rn, Ik : Ω-Rn,
k¼ 1;2;… .

Note that [14–18,33] from (2.2), ηðtÞ ¼ 0 for tatk, k¼ 1;2;… .
Then, we have

xðtkþhÞ�xðtkÞ ¼
1

ΓðqÞ
Z tk þh

t0
ðtkþh�sÞq�1½f ðs; xðsÞÞþηðsÞ�ds

� 1
ΓðqÞ

Z tk

t0
ðtk�sÞq�1½f ðs; xðsÞÞþηðsÞ�ds

¼ 1
ΓðqÞ

Z tk þh

tk
ðtkþh�sÞq�1½f ðs; xðsÞÞþηðsÞ�ds

þ 1
ΓðqÞ

Z tk

t0
ðtkþh�sÞq�1�ðtk�sÞq�1

� �
½f ðs; xðsÞÞþηðsÞ�ds;

where h40 is sufficiently small. As h-0þ , we obtain

ΔxðtkÞ ¼ xðtþk Þ�xðtkÞ ¼ IkðxðtkÞÞ;

where xðtþk Þ ¼ limh-0þ xðtkþhÞ.
The controller ηðtÞ has an effect on sudden changes in the state

of (2.1) at the time instants tk, i.e., ηðtÞ is an impulsive control of
(2.1). The corresponding closed-loop nonlinear delayed equation
of (2.1) under impulsive control (2.2) is given by

t0
cDq

t xðtÞ ¼ f ðt; xðtÞÞ; tatk;

ΔxðtkÞ ¼ IkðxðtkÞÞ; k¼ 1;2;…;

(
ð2:3Þ

where tkotkþ1o⋯, ðk¼ 1;2;…Þ are the moments of impulsive
perturbations due to which the state x(t) changes from the position
xðtkÞ into the position xðtþk Þ; Ik are functions, which characterize the
magnitude of the impulse effect at the moments tk.

Let x0AΩ. Denote by xðtÞ ¼ xðt; t0; x0Þ the solution of system
(2.3), satisfying the initial condition

xðtþ0 ; t0; x0Þ ¼ x0: ð2:4Þ

We suppose that the functions f and Ik, k¼ 1;2;… , are smooth
enough on ½t0;1Þ�Ω and Ω, respectively, to guarantee existence,
uniqueness and continuability of the solution xðtÞ ¼ xðt; t0; x0Þ of the
initial value problem (IVP) (2.3), (2.4) on the interval ½t0;1Þ for each
x0AΩ and tZt0. The solutions xðt; t0; x0Þ are, in general, piecewise
continuous functions with points of discontinuity of the first type at
which they are left continuous, that is, at the moments tk,
k¼ 1;2;…, the following relations are satisfied [19]:

xðt�k Þ ¼ xðtkÞ and xðtþk Þ ¼ xðtkÞþ IkðxðtkÞÞ:

For the basic theory on impulsive differential equations, the
reader is referred to [34,35] and the references cited therein.

We shall introduce definitions of practical stability of system
(2.3) which are analogous to the definitions given in [26].

Definition 2.2. The system (2.3) is said to be:

(a) practically stable with respect to ðλ;AÞ, if given ðλ;AÞ with
0oλoA, we have j jx0 j joλ implies j jxðt; t0; x0Þj joA, tZt0
for some t0ARþ ;

(b) uniformly practically stable with respect to ðλ;AÞ, if (a) holds for
every t0ARþ ;

(c) practically asymptotically stable with respect to ðλ;AÞ, if
(a) holds and limt-1j jxðt; t0; x0Þj j ¼ 0.

For fractional-order systems we will introduce the new notion
of practical Mittag–Leffler stability.

Definition 2.3. The system (2.3) is said to be practically Mittag–
Leffler stable with respect to ðλ;AÞ, if given ðλ;AÞ with 0oλoA, we
have j jx0 j joλ implies

j jxðt; t0; x0Þj jrfAEq½�αðt�t0Þq�gβ ; tZt0;

for some t0ARþ , where Eq is the corresponding Mittag–Leffler
function, α, β40.

Remark 2.1. The Mittag–Leffler stability notions for fractional-
order systems are analogous to the exponential stability notions
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