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a b s t r a c t

This paper deals with the issue of distributed estimation and control for mobile sensor networks with
coupling delays. Based on the Kalman-Consensus filter and the flocking algorithm, all mobile sensors
move to a target to increase the quality of gathered data, and achieve consensus on the estimation values
of the target in the presence of time-delay and noises. By applying an effective cascading Lyapunov
method and matrix theory, stability analysis is carried out. Furthermore, a necessary condition for the
convergence is presented via the boundary conditions of feedback coefficients. Some numerical examples
are provided to validate the effectiveness of theoretical results.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Most recently, a great research attention has been paid on
sensor networks, which are composed of several sensors with
limited capabilities of data gathering, communication, and com-
putation [1,2]. Due to features of low cost, tiny size, mobility and
flexibility, mobile sensor networks have extremely high advan-
tages in applications like target tracking, information processing,
and surveillance systems [3–9].

In particular, Olfati-Saber and Jalalkamai have proposed a
mobile target tracking method via a combination of a flocking
algorithm and the Kalman-Consensus filtering protocol [10].
Flocking is a ubiquitous phenomenon in nature exhibited by
flocking of birds, schooling of fish, swarming of bacteria and so
forth [11,12]. It portrays the collective behavior derived from
interacting individuals using only limited local environmental
information and has been continuously studied for its potential
application in multi-agent coordination control such as unmanned
air vehicles, mobile robots and sensor networks [13,14]. On the
other hand, Kalman-Consensus filter is a kind of recursive filter
broadly applied in dynamical networks, which can accurately
estimate the states from a series of measurements that contain

noises [15]. In fact, the problem of distributed estimation and
control for mobile sensor networks in [10] has been well solved by
a flocking algorithm, in which the measurement of the leader for
each mobile sensor is not accurate due to noise interference.

Considering the constrained speed of transmission or spread-
ing together with communication congestions, time-delay is
inevitable in control system and it would degrade performance or
even result in instability. A great number of literatures focus on its
negative effects and corresponding solutions. Experiment results
about the states of coupled optoelectronic oscillators with varied
time-delays are available in [16]. Issues of time-delay in different
control situations like Takagi-Sugeno fuzzy systems [17] and
multi-variable systems [18] have been investigated. It is noted that
few works about flocking have studied with time-delay up to now
[19–22]. In [19], Lu et al. have presented a flocking algorithm for
double-integrator multi-agent systems with an active virtual lea-
der and time-delay. In [20], Yang et al. have considered the
flocking of multi-agent systems in the presence of time-delay for
both leader-free and leader-present scenarios. Delay-dependent
rendezvous and flocking of large-scale multi-agent systems in the
presence of communication delays have been investigated in [21].
In [22], Hu et al. have studied the flocking in multi-agent systems
with nonholonomic wheeled agents and a large communication
delay via a distributed low gain feedback control algorithm.
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In this study, we consider the distributed estimation and con-
trol for mobile sensor networks with coupling delays. Compared
with the highly related existing results, the contribution of this
study lies in two aspects. First, this paper extends the previous
research results on distributed estimation and control for mobile
sensor networks [10] to a more practical situation, that is, the case
with coupling delays. Second, compared with the previous litera-
tures on the flocking with a leader and time-delay [19–22], the
measurements of the state of the leader are different for all mobile
sensors and time-delay exists in the nonlinear couplings.

The remainder of this paper is organized as follows. Section 2
describes preliminaries on graph theory and the problem con-
cerned. Section 3 states the main estimation and control algo-
rithm. Section 4 presents a series of numerical examples to illus-
trate the effectiveness of the theoretical results. Section 5 con-
cludes the paper and gives discussion on future works.

Notations: Through out this paper, Im is the m�m identity
matrix, and 1n stands for n� 1 column vector of all ones. Let diag
ðA1;A2;…;ApÞ be the diagonal matrix with Ai, i¼ 1;2;…; p on the
diagonal position. λiðAÞmeans the ith eigenvalue of matrix A, while
λminðAÞ and λmaxðAÞ are, respectively, the minimum and maximum
eigenvalues of the matrix A. � refers to the Kronecker product and
J � J represents the Euclidean norm.

2. Preliminaries and problem formulation

2.1. Preliminaries

Conventionally, we use G¼ fV; Eg to represent the commu-
nication topology among N nodes, where V¼ f1;2;…;Ng is a
nonempty finite set of nodes and EDV�V is an edge set
describing the information exchange. If an edge ði; jÞAE, it means
that there is an information flow from node i to node j, that is,
node j can directly get information from node i. We exclude the
circumstance of self-connection, i.e., ði; iÞ=2E. If an edge ði; jÞAE

means the edge ðj; iÞAE simultaneously, the corresponding graph
is called undirected graph, otherwise, it is said to be directed. The
neighbors set of node i is defined as Ni ¼ fjAVj ði; jÞAEg. A path
from node i to node j is a sequence of edges:
ði; v1Þ; ðv1; v2Þ;…; ðvk�1; vkÞ; ðvk; jÞ, where vlAV for 1r lrk. The
undirected graph is called connected if there is a path between any
two nodes.

The adjacency matrix A¼ ½aij�ARN�N related to undirected
graph G is defined as

aij ¼
1; if jANi;

0; otherwise:

(

The Laplacian matrix L¼ ½lij�ARN�N associated with G is defined as

lij ¼

P
jANi

aij; if i¼ j;

�aij; otherwise:

8<
:

It is well known that L has eigenvalues ordered as
0¼ λ1ðLÞrλ2ðLÞr⋯rλNðLÞ. Further, if G is connected, λ2ðLÞ is the
smallest nonzero eigenvalue.

2.2. Problem formulation

Consider a mobile sensor network composed of N sensors
labeled as 1;2;…;N; and one target moving in an n-dimensional
Euclidean space. The dynamics of the ith sensor is described by

_qi tð Þ ¼ pi tð Þ;
_pi tð Þ ¼ ui tð Þ; i¼ 1;2;…;N;

(
ð2:1Þ

where qi, pi, uiARn are the position vector, velocity vector, and
control input of the ith sensor, respectively.

The mobile target has the following dynamics:

_xðtÞ ¼ AxðtÞþBωðtÞ; xðtÞARd; ð2:2Þ
and sensor agents measure the target with the dynamics

ziðtÞ ¼HixðtÞþviðtÞ; ziðtÞARm; i¼ 1;2;…;N; ð2:3Þ
in which A, B and Hi are of appropriate dimensions, ωðtÞ and vi(t) are
input zero-mean Gaussian noise and measurement zero-mean
Gaussian noise, respectively. In practice, ωðtÞ primarily results from
the embedded microprocessors in the sense of electron devices such
as thermal noise, shot noise and induction noise, while vi(t) is gen-
erated by unreliable sensing environment. Both of them can corrupt
the control performance, but fortunately the distributed Kalman-
Consensus filter proposed in [10] achieves unbiased estimation.

Our main task in this paper is to design an effective estimation
and control algorithm so as to achieve the flocking of mobile
sensor networks with coupling delays, and guarantee achieving
consensus on target estimates by all mobile sensors.

3. Main results

In [10], Olfati-Saber and Jalalkamai have proposed a continuous
Kalman-Consensus filtering (KCF) algorithm on mobile sensor
networks described in the following and have demonstrated its
validity and feasibility theoretically.

Theorem 3.1. [10] Consider a sensor network with a continuous-
time linear sensing model in (2.3).Suppose that each node applies the
following distributed estimation algorithm

_̂x i ¼ Ax̂iþKiðzi�Hix̂iÞþμPi
P
jANi

ðx̂j� x̂iÞ

Ki ¼ PiH
T
i R

�1
i ; μ40

_Pi ¼ APiþPiA
T þBQBT �KiRiK

T
i

8>>><
>>>: ð3:4Þ

with a Kalman-Consensus estimator and initial conditions Pið0Þ ¼ P0

and x̂ið0Þ ¼ xð0Þ. Then, the collective dynamics of the estimation
errors ηi ¼ x� x̂i (without noise) is a stable linear system with a
Lyapunov function V̂ ðηðtÞÞ ¼ PN

i ¼ 1 η
T
i ðtÞP�1

i ηiðtÞ. Moreover,
_̂V ðηðtÞÞr�2μ½ηT ðtÞðLðtÞ � ImðηðtÞ�r�2μminðλ2ðLðtÞÞÞJηðtÞJ2,
where minðλ2ðLðtÞÞÞ is the minimum value of λ2ðLðtÞÞ.

In the above estimation algorithm, x̂i denotes the estimated
value on target from sensor i, zi is the measurement value of the
target, μ signifies the feedback coefficient from neighbor sensors, Pi
stands for estimate state covariance matrices, and Q, Ri are
respectively the variance matrices of random vector ω, vi.

Remark 3.1. In [10], Olfati-Saber and Jalalkamai have proposed an
information value of sensor measurement and have proved that
the aggregate information value improves as emergence of flock-
ing, thus the flocking algorithm is information-driven. In this
paper, we reserve the definition of information value Ii ¼ f ðρiÞ to
depict the information-driven flocking algorithm, where ρi
denotes the distance between the sensor i and the target.

Assumption 3.1. Suppose that the communication topology of
sensor networks is initially connected.

Define that every sensor agent shares the same limited sensing
radius r0, then E (hence G) is time-varying as topology evolution.
Here the frequently-used connectivity-preserving rules [23] are
adopted to maintain the connectivity of the proximity graph. The
time-varying set of links among mobile sensors is denoted by EðtÞ
¼ ði; jÞ i; jAV

�� ��
which follows the rules below.
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