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a b s t r a c t

This paper studies the problem of finite-time stabilization by state feedback for a class of uncertain
nonholonomic systems in feedforward-like form subject to inputs saturation. Under the weaker homo-
geneous condition on systems growth, a saturated finite-time control scheme is developed by exploiting
the adding a power integrator method, the homogeneous domination approach and the nested satura-
tion technique. Together with a novel switching control strategy, the designed saturated controller
guarantees that the states of closed-loop system are regulated to zero in a finite time without violation of
the constraint. As an application of the proposed theoretical results, the problem of saturated finite-time
control for vertical wheel on rotating table is solved. Simulation results are given to demonstrate the
effectiveness of the proposed method.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider a class of nonholonomic systems
described by

_x0 ¼ u0þϕ0ðt; x0Þ
_x1 ¼ x2u0þϕ1ðt; x2;…; xn;u0;u1Þ
_x2 ¼ x3u0þϕ2ðt; x3;…; xn;u0;u1Þ
⋮

_xn�1 ¼ xnu0þϕn�1ðt; xn;u0;u1Þ
_xn ¼ u1þϕnðt;u0;u1Þ ð1Þ

where ðx0; xÞT ¼ ðx0; x1;…; xnÞT ARnþ1, u¼ ðu0;u1ÞT AR2 are the
system state and control input, respectively. ϕ0 : R� R-R and
ϕi : R� Rn� i � R� R-R, i¼ 1;…;n are C1 functions and vanish at
the origin. Note that the x-subsystem of system (1) has a
feedforward-like structure. This implies system (1) is a non-
holonomic system in feedforward-like form, which is also called as
nonholonomic feedforward system in this paper.

The control of nonholonomic systems has attracted a great deal
of attention in the past decades because it can be used to model
many practical systems, such as wheeled mobile robots, car-like
vehicle, under-actuated satellites and so on. However, due to the
limitation imposed by Brockett's necessary condition [1], this class
of nonlinear systems cannot be stabilized by smooth (or even
continuous) time-invariant state feedback. As a consequence, the
well-developed smooth nonlinear control theory and methodol-
ogy cannot be directly used. To circumvent this difficulty, with the
effort of many researchers a good number of intelligent approa-
ches have been proposed, which can mainly be classified into
discontinuous time-invariant feedback [2,3], smooth time-varying
feedback [4–6] and hybrid feedback [7]. The interested reader is
referred to the early survey paper [8] and recent ones [9,10] for
more details. By means of these valid methods, the robust issue of
nonholonomic systems has been systematically studied and
fruitful results have been obtained over the last years, for example,
one can see [11–20] and the references therein. However, the
effect of the inputs constraint is omitted in the above-mentioned
results.

As a matter of fact, any actuator always has a limitation of the
physical inputs and its existence often severely limits system
performance, giving rise to undesirable inaccuracy or leading to
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instability [21,22]. Thus, it is of great significance to study the
problem of stabilizing nonholonomic systems subject to inputs
saturation. In this regard, some interesting results have also been
reported in the literature. For example, the saturated feedback
controllers were constructed in [23–26] for nonholonomic
wheeled mobile robots in different types. For nonholonomic sys-
tems in standard chained driftless form, i.e, system (1) with
ϕið�Þ ¼ 0, the saturated asymptotic stabilizers were constructed in
[27,28]. Taking into account that the finite-time stable systems
may demonstrate not only faster convergence rates, but also
higher accuracies and better disturbance rejection properties [29],
Wu et al. [30] recently investigated the saturated finite-time sta-
bilization of system (1) with ϕnð�Þ ¼ 0 under the assumption that
jϕ0ð�ÞjrM and in a neighborhood of the origin, the following
holds:

jϕið�Þjrb
Xn

j ¼ iþ1

j xj j qij ; i¼ 1;…;n�1 ð2Þ

where constants MZ0, b40, �1=noτo0 and qij satisfy
qij4ð1þ iτÞ=ð1þðj�1ÞτÞZ1. Note that both the upper bound of
ϕi's independent of inputs and qi;iþ141 are required in this
assumption. However, there exist practical systems whose non-
linear terms do not satisfy such restriction, such as the vertical
wheel on rotating table presented in Section 4. As a natural
extension, the following interesting problem is proposed: Is it
possible to further relax this nonlinear growth condition? Under the
weaker condition, can a saturated finite-time stabilizing controller be
designed ?

Motivated by the above observation, we shall address this
problem here and provide a solution to the problem of finite-time
stabilization of nonholonomic feedforward system (1) by using
saturated state feedback. The contributions of this paper are three-
folds: (i) By comparison with the existing results in [30–40], the
nonlinear growth condition is largely relaxed and a much weaker
sufficient condition is given. (ii) Based on a combined application
of the adding a power integrator method, the homogeneous
domination approach and the nested saturation technique, a new
systematic saturated state feedback control design procedure is
proposed to solve the finite-time stabilization problem for all
plants in the considered class and leads to more general results
never achieved before. (iii) An application example for vertical
wheel on rotating table is modeled and solved by the proposed
method.

Notations: Throughout this paper, the following notations are
adopted. Rþ denotes the set of all nonnegative real numbers and
Rn denotes the real n-dimensional space. For a given vector or
matrix X, XT denotes its transpose, and jX j is the Euclidean norm
of a vector X. Ci denotes the set of all functions with continuous ith
partial derivatives. A sign function sign(x) is defined as follows:
signðxÞ ¼ 1, if x40; signðxÞ ¼ 0, if x¼0 and signðxÞ ¼ �1, if xo0.
For any aARþ and xAR, the function ½x�a is defined as
½x�a ¼ sgnðxÞjxj a. Besides, letPi

jð�Þ ¼ 0 if j4 i and the arguments of
the functions will be omitted or simplified, whenever no confusion
can arise from the context. For instance, we sometimes denote a
function f ðxðtÞÞ by simply f(x), f ð�Þ or f.

2. Problem formulation and preliminaries

The objective of this paper is to present a saturated control
design strategy which stabilizes the system (1) in a finite time
under the following saturation constraint:

�umax
i ruirumax

i ; i¼ 0;1 ð3Þ
where u0

max and u1
max are priori known positive real numbers.

To this end, the following assumptions are imposed in this
paper.

Assumption 2.1. There is a constant MZ0 such that

jϕ0ð�ÞjrMoumax
0 ð4Þ

Assumption 2.2. For i¼ 1;…;n, there are constants
0raominf1;umax

0 g, b40 and τAð�1=n;0Þ such that

jϕið�Þjrajxiþ1 j þb
Xnþ1

j ¼ iþ2

jxj j ðri þ τÞ=rj ð5Þ

where xnþ1 ¼ u1 and ri ¼ 1þði�1Þτ, i¼ 1;…;nþ1.

Remark 2.1. Although Assumption 2.1 seems to be somewhat
restrictive, it is very necessary to ensure the existence of saturated
stabilizer for nonholonomic system (1). Next, we will explain its
necessity from two points.

(i) The boundedness of ϕ0 is necessary. If not, the x0-subsystem
might be uncontrollable. For example, consider the following
simple case ϕ0 ¼ x20. Obviously, when ju0 jrumax

0 is needed, there
does not exist any saturated control to globally stabilize this sys-
tem with initial value x0ð0Þ4umax

0 þ1.
(ii) Moumax

0 is necessary. Similarly, when ϕ0ZdnZumax
0 , the

solution of x0-subsystem satisfies jx0ðtÞjZ j x0ð0Þjeðd0 �umax
0 Þt , which

leads to that there does not exist any saturated control to globally
stabilize such system.

Remark 2.2. It is worth pointing out that most of the existing
results on nonlinear feedforward systems require the upper bound
of nonlinear term ϕi being independent of state xiþ1 or input u1,
for example, the xiþ1-free-growth is needed in [31–36] and the u1-
free-growth is needed in [30,37–40], Assumption 2.2, in which
both state xiþ1 and input u1 beside the states xiþ2;…; xn are
involved, is less restrictive and allows for a much broader class of
systems in some sense.

Remark 2.3. The boundedness and C1 property of ϕ0 in
Assumption 2.1 imply that there exist constants c40 andωAð0;1Þ
such that jϕ0ð�Þjrcjx0 jω.

In what follows, we review some useful definitions and lemmas
which will serve as the basis of the coming control design and
performance analysis.

Definition 2.1 (Wu et al. [20]). Consider the nonlinear system

_x ¼ f ðt; xÞ with f ðt;0Þ ¼ 0; xARn ð6Þ

where f : Rþ � U0-Rn is continuous with respect to x on an open
neighborhood U0 of the origin x¼0. The equilibrium x¼0 of the
system is (locally) uniformly finite-time stable if it is uniformly
Lyapunov stable and finite-time convergent in a neighborhood U
DU0 of the origin. By “finite-time convergence,” we mean: If, for
any initial condition xðt0ÞAU at any given initial time t0Z0, there
is a settling time T40 , such that every xðt; t0; xðt0ÞÞ of system (6) is
defined with xðt; t0; xðt0ÞÞAU=f0g for tA ½t0; TÞ and satisfies limt-T

xðt; t0; xðt0ÞÞ ¼ 0 and xðt; t0; xðt0ÞÞ ¼ 0 for any tZT . If U ¼ U0 ¼ Rn,
the origin is a globally (uniformly) finite-time stable equilibrium.

Lemma 2.1 (Wu et al. [20]). Consider the nonlinear system descri-
bed in (6). Suppose there is a C1 function Vðt; xÞ defined on

ÛDU0 � R, where Û is a neighborhood of the origin, class K func-

tions π1 and π2, real numbers c40 and 0oαo1, for tA ½t0; TÞ and
xAÛ such that (i) π1ðjxj ÞrVðt; xÞrπ2ðjxj Þ, 8 tZt0, 8xA Û ; (ii)
_V ðt; xÞþcVαðt; xÞr0, 8 tZt0, 8xAÛ . Then, the origin of (6) is uni-

formly finite-time stable with TrV1�α ðt0 ;xðt0ÞÞ
cð1�αÞ for initial condition xðt0Þ

in some open neighborhood Û of the origin at initial time t0. If Û
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