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Abstract

In the nonlinear analysis of elastic structures, the displacement increments generated at each incremental step can be decomposed into
two components as the rigid displacements and natural deformations. Based on the updated Lagrangian (UL) formulation, the geometric
stiffness matrix [k,] is derived for a 3D rigid beam element from the virtual work equation using a rigid displacement field. Further, by
treating the three-node triangular plate element (TPE) as the composition of three rigid beams lying along the three sides, the [k,] matrix
for the TPE can be assembled from those of the rigid beams. The idea for the UL-type incremental-iterative nonlinear analysis is that if
the rigid rotation effects are fully taken into account at each stage of analysis, then the remaining effects of natural deformations can be
treated using the small-deformation linearized theory. The present approach is featured by the fact that the formulation is simple, the
expressions are explicit, and all kinds of actions are considered in the stiffness matrices. The robustness of the procedure is demonstrated

in the solution of several benchmark problems involving the postbuckling response.
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1. Introduction

The nonlinear analysis of elastic structures is usually
conducted in an incremental-iterative way based on the
three configurations: the initial configuration Cj, last calcu-
lated configuration C;, and current deformed configuration
(,, as indicated in Fig. 1. In a step-by-step nonlinear anal-
ysis, we are interested in the behavior of the structure dur-
ing the incremental step from C; to C,. The deformations
occurring within each incremental step are assumed to be
small, but the displacements accumulated for all incremen-
tal steps can be very large. The concept to be presented
herein is based on the updated Lagrangian (UL) formula-
tion, in that all quantities of the structure are expressed
with reference to the last configuration Cj.
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The displacement increments generated at each incre-
mental step of an elastic nonlinear analysis can be com-
posed into two components as the rigid displacements and
natural deformations [1,2]. For most structures encountered
in practice, the rigid component constitutes a much larger
portion of the displacement increments at each incremental
step with respect to the deformational component. For a
UL-type incremental-iterative analysis, the idea is that if
the rigid rotation effects for elements with initial forces
(or stresses) are fully taken into account at each stage of
analysis, then the remaining effects of natural deformations
can be treated using the small-deformation linearized
theory.

Concerning the incremental-iterative procedure, distinc-
tion should be made between the predictor and corrector
stages [3,4]. The predictor relates to solution of the dis-
placement increments { U} of the structure for given load
increments {P} based on the structural equation
[K[{U} = {P}. This stage determines the frial direction of
iteration of the structure in the load—deflection space and
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Fig. 1. Motion of body in three-dimensional space.

thus affects the number of iterations or speed of conver-
gence. For this reason, the stiffness matrix [K] used in the
structural equation need not be exact, but should be kept
rigid-body qualified to avoid convergence to incorrect
directions. In the UL formulation, the corrector refers to
recovery of the force increments {,f} at C, from the dis-
placement increments {u} made available through the
structural displacement increments { U}, and the superim-
position of these force increments with the initial nodal
forces {}f} following the rigid body rule [5,6] for obtaining
the total element forces {3/} at C..

In this paper, a rigid-body qualified geometric stiffness
matrix [kg] will be derived for the 3D beam element from
the virtual work equation by assuming the displacement
field to be of the rigid type. Such an element is referred
to as the rigid element. To the knowledge of the authors,
no similar elements were presented by other scholars to
explicitly accommodate the rigid behaviors of structures.
For the 3D beam, the initial surface tractions may generate
some moment terms upon 3D rotations during the incre-
mental step from C; to C,, commonly known as the
moments induced by the semitangential torques and
quasi-tangential bending moments [1,7]. Naturally, all such
terms should be included in the virtual work formulation
for the 3D beam. The other issue to be considered for the
space frames is the equilibrium of angled joints in the
rotated configuration C,, rather than in C,. Based on such
a consideration, only the symmetric part of the geometric
stiffness matrix of each element has to be retained in the
structural stiffness matrix, as the antisymmetric parts of
all the elements meeting at the same joint cancel out with
each other [6,7].

As for the analysis of plate/shell problems, a triangular
plate element (TPE) with three translational and three rota-
tional degrees of freedom (DOFs) at each of the three tip
nodes will be considered, for its compatibility with the
12-DOF beam element derived above. Since the rigid body
behavior of each finite element is solely determined by its
external shape or nodal DOFs, the geometric stiffness
matrix for the TPE is derived by treating the TPE as the
composition of three rigid beams lying along the three
sides. The geometric stiffness matrix so derived is explicit
and capable of dealing with all kinds of in-plane and out-
plane actions.

For a review of related works on geometric nonlinear
analysis of structures, Ref. [8] may be consulted, in which
a total of 122 papers were cited. The purpose of this paper
is not to review any related works. Rather, efforts will be
focused on application of the rigid body concept and deri-
vation of rigid-body qualified geometric stiffness matrices
[k,] for the 3D beam element and TPE. The elastic stiffness
matrices [k.] adopted are those readily available in the
literature, namely, the elastic stiffness matrix [k.] adopted
for the 3D beam element is the one commonly used [6,9],
and the elastic stiffness matrix [k.] adopted for the TPE is
constructed as the composition of Cook’s plane hybrid ele-
ment for membrane actions [10] and the hybrid stress model
(HSM) of Batoz et al. for bending actions [11]. For the sake
of brevity, repetition of relevant derivations is kept to the
minimum.

2. Theory of three-dimensional beams

Before we proceed to derive the rigid element for the 3D
beam, a summary of the theory for the 3D beam with
bisymmetric solid cross-sections is first given. The beam
element considered has a total of 12 DOFs as shown in
Fig. 2, with x denoting the centroidal axis and (y,z) the
two principal axes of the cross-section. Based on the UL
formulation, the virtual work equation for a 3D beam at
C,, but with reference to Cj, can be expressed in a linear-
ized form as [6]:
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where E and G denote the elastic and shear modulus,
respectively, V' is the volume of the element, and the fac-
tors of 4 and 2 are added to account for the symmetry
of shear strains, i.e., 16y, = 1€y, 1€x: = 1€2x, 1Hxp = 1My
Mxz = 122 (", 11_\.),, lrxz) are the initial (Cauchy) axial
and shear stresses, and & denotes the variation of the
quantity following. The linear and nonlinear components
of the strain increments can be expressed with reference
to C; as
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Fig. 2. Three-dimensional beam element.
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