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a b s t r a c t

In this paper, a technique for estimation of state variables and control of a class of electromechanical
system is proposed. Initially, an attempt is made on rudimentary pole placement technique for the
control of rotor position and angular velocity profiles of Permanent Magnet Stepper Motor. Later, an
alternative approach is analyzed using feedback linearization method to reduce the error in tracking
performances. A damping control scheme was additionally incorporated into the feedback linearization
system in order to nullify the persistent oscillations present in the system. Furthermore, a robust
backstepping controller with high efficacy is put forth to enhance the overall performance and to carry
out disturbance rejection. The predominant advantage of this control technique is that it does not require
the DQ Transformation of the motor dynamics. A Lyapunov candidate was employed to ensure global
asymptotical stability criterion. Also, a nonlinear observer is presented to estimate the unknown states
namely load torque and rotor angular velocity, even under load uncertainty conditions. Finally, the
performances of all the aforementioned control schemes and estimation techniques are compared and
analyzed extensively through simulation.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Permanent Magnet Stepper Motors (PMSM) [1,13] are widely
used in positioning systems for its efficient open-loop operation
and very small step angle. Multi-link robot manipulators in
robotics, biomedical instruments, satellite positioning and other
motion control industries require smooth, high precision position
and control of PMSM. The feedback linearization control and its
relationship with DQ transformation of stepper motor were dis-
cussed in [9]. For this improved position tracking and control,
nonlinear feedback control method was proposed in [11], where
nonlinear observer was designed for speed estimation. The
unknown load variations have the effect upon the motor dynamics
under various excitation schemes. In order to achieve smoother
performance during mid-frequency operation, microstepping
excitation scheme can be employed. Passive components and

mechanical damper can be used to improve the performance of
stepper motor as in [3]. The PWM based current feedback control
of stepper motor was described for minimizing torque and current
ripples [25]. The idea of feedback linearization and Passivity the-
ory are explained in [17–19]. In [5], [12] and [16], it had discussions
about the simple field weakening methods for position control of
Permanent Magnet Stepper Motor combined with backstepping
control. Control of Motor currents reduces the motor model in to a
second order model as in [14] and [15]. The papers [6–8] discussed
extensively about various robust control schemes while ensuring
the stability of the system dynamics. For angular position tracking,
sliding mode controller algorithm was developed by [25], through
position and velocity measurement and with these measurements
robust control scheme was presented in [20,23].

In this paper, a critical evaluation and performance analysis of
various nonlinear state estimation and control schemes for rotor
position estimation is presented. The state estimation and control
technique using backstepping control scheme is proposed, where
the uncertainty associated with unknown load and mechanical
disturbances is addressed with robustness, considering the
bounded modeling errors for rotor position estimation and speed
control of PMSM through position measurement. The paper is
organized as follows: Section 2 consists of the mathematical
model of PMSM. Section 3 discusses various control schemes and
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estimation techniques for rotor position tracking and angular
velocity control. The simulation results and analysis are reported
in Section 4 and concluding remarks are summarized in Section 5.

2. Mathematical model of PMSM

The electro-mechanical dynamics of two phase Permanent
Magnet Stepper Motor model [1,2,11,24] is considered here as
follows:

_θ ¼ω
_ω ¼ 1=Jð�KIa sin ðNθÞþKIb cos ðNθÞ�Bω�τLÞ
_Ia ¼ 1=LðVa�RIaþKω sin ðNθÞÞ
_Ib ¼ 1=LðVb�RIb�Kω cos ðNθÞÞ ð1Þ
where x¼[θ, ω, Ia, Ib]T is the state, Ia, Ib and Va, Vb are the currents
and voltages in the two phases A and B, ω is the rotor angular
velocity, B is the viscous friction coefficient [N m s/rad], τL is the
unknown constant load torque, θ is the rotor angular position and
R is the resistance of phase winding. L is the winding inductance, J
is the inertia of motor [kg m2], K is the torque constant of motor
and Nr is the number of rotor teeth. The magnetic coupling
between the phases and the detent torque are ignored. The DQ
transformation of phase voltage and current is given by the fol-
lowing set of equations [21]:

Vd

Vq

" #
¼

cos ðNrθÞ sin ðNrθÞ
� sin ðNrθÞ cos ðNrθÞ

" #
Va

Vb

" #
Id
Iq

" #
¼

cos ðNrθÞ sin ðNrθÞ
� sin ðNrθÞ cos ðNrθÞ

" #
Ia
Ib

" #
ð2Þ

where Vd (direct voltage), Vq (quadrature voltage) and Id (direct
current), Iq (quadrature current) are DQ transforms of the stator
voltage and current. Applying DQ transformation to (1) yields:

_Id ¼ 1=L Vd�RIdþNrLωIq
� �

_Iq ¼ 1=L Vq�RIqþNrLωId�Kω
� �

_ω ¼ 1=J KIq�Bω�τL
� �

_θ ¼ω ð3Þ

3. Control schemes and estimation

3.1. Pole Placement by state feedback

In Pole Placement Control Technique, the state variables are
available for measurement and feedback since an assumption is
made that the system is completely state controllable, whereas the
control inputs are unconstrained. The state feedback control law
for the motor dynamics is of the form:

U ¼ �K � X: ð4Þ
The resulting closed loop system is:

_X ¼ A� B � Kð Þð Þ � X ð5Þ
where K is the gain matrix which helps in placement of the closed
loop poles in desired pole locations. Here, a polynomial approach
is utilized for the pole placement technique using Diophantine
equations, which ensure the stability of closed loop system
wherein its order is the sum of plant and controller order. The
Diophantine equations involve finding all the unknown variables
which are suitable for all the variables. Here the closed remainder
theorems with pair wise co prime integers greater than one are
used (Figs. 1 and 2).

3.2. State feedback linearization control

In order to reduce the errors in the conventional controller and
to ensure close tracking performances, an optimal state feedback
linearization control scheme (FBL) is presented and studied
(Figs. 3 and 4). It linearizes the system by changing the input
voltages in the state variables. Now, applying feedback lineariza-
tion technique to the DQ transformed equations:

Vd ¼ �NrωLIqþVdrþNrωrLIqrþLud

Vq ¼NrωLIdþVqr�NrωrLIdrþLuq

ud ¼ k11 Idr� Idð Þ
uq ¼ k22 Iqr� Iq

� �þk23 ωr�ωð Þþk24 θr�θ
� �þk25ξ ð6Þ

where ξ¼Rt
0
θd tð Þ�θ tð Þ� �

dt and ud, uq are the output comprising of

gains multiplied by the errors in current, position and speed.
These equations are obtained from the tracking error ε which is
defined as:

ϵ¼▵
h
Id� Idr; Iq� Iqr;ω �ωr; θ �θr

iT
The feedback term u is a function of ε i.e.,

u¼ �Kϵ
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Fig. 1. Rotor position tracking in Pole Placement Controller.
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Fig. 2. Rotor speed tracking in Pole Placement Controller.
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