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a b s t r a c t

In this paper, we improve the previous work by considering that a control place can have multiple self-
loops. Then, two integer linear programming problems (ILPPs) are formulated. Based on the first ILPP, an
iterative deadlock control policy is developed, where a control place is computed at each iteration to
implement as many marking/transition separation instances (MTSIs) as possible. The second ILPP can
find a set of control places to implement all MTSIs and the objective function is used to minimize the
number of control places. It is a non-iterative deadlock control strategy since we need to solve the ILPP
only once. Both ILPPs can make all legal markings reachable in the controlled system, i.e., the obtained
supervisor is behaviorally optimal. Finally, we provide examples to illustrate the proposed approaches.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Petri nets [42] are an effective tool to model and control flexible
manufacturing systems (FMSs) [56]. Petri nets have compact
structures and can be represented in the form of matrixes. Thus,
they can be simply analyzed by linear algebras. Deadlocks [16] are
a constant issue in FMSs [9,14,17,31,33,34,36–38,40] due to the
competition for limited shared resources. The last two decades
have shown that Petri nets are widely used in the deadlock control
of FMSs, which leads to abundant results [3–5,12,13,15,19,20,23,
24,27–30,32,39,58,59,61,63–67,69].

In the framework of Petri nets, a deadlock prevention approach
usually finds a supervisor for a system to be controlled, which
consists of control places and the arcs connecting them to tran-
sitions that belong to the system. The supervisor is computed off-
line and once a deadlock control policy is established and
enforced, no deadlocks can occur anymore. Based on Petri nets, the
performance of a deadlock control policy is always evaluated by
three criteria: behavioral permissiveness, structural complexity,

and computational complexity. Behavioral permissiveness is
measured by the number of legal states kept in the controlled
system. In the case that all legal states of a system to be controlled
are reachable, the corresponding supervisor is said to be maxi-
mally permissive (or optimal). The structural complexity is defined
in terms of the number of control places and arcs in a Petri net
supervisor. A simplification of the supervisory structure can
reduce the costs of hardware and software at implementation
stage. An efficient computation indicates that the supervisor can
be obtained in a reasonable time. In this work, we mainly focus on
the optimization of the first two criteria.

Behavioral optimality plays an important role in the develop-
ment of deadlock control of Petri nets. A representative work is the
theory of regions proposed by Ghaffari et al. [25] and Uzam [52],
which can definitely find a maximally permissive Petri net
supervisor if it exists. The approach first generates the reachability
graph of a net model. Then, the set of marking/transition separa-
tion instances (MTSIs) is derived. An MTSI is a pair of a marking M
and a transition t, denoted as ðM; tÞ, where M is a legal marking
and once t fires at M, it yields an illegal marking. For deadlock
control purposes, Ghaffari et al. [25] develop an iterative approach
where at each iteration, an MTSI ðM; tÞ is singled out and a linear
programming model is designed to find a control place to imple-
ment ðM; tÞ by preventing t from firing at M. Meanwhile, all legal
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markings are ensured to be reachable. The process carries out until
all MTSIs are implemented. Then, a set of control places is
obtained, which can make the controlled system live with all legal
markings. That is to say, the obtained supervisor is behaviorally
optimal. However, the approach does not consider the structural
complexity since it always leads to a supervisor with too many
control places.

Another representative study based on the reachability graph
analysis is presented by Uzam and Zhou [53,54]. They classify a
reachability graph into two parts: a live zone (LZ) and a deadlock
zone (DZ), where the LZ contains all legal markings and the DZ
contains all illegal markings. Then, the set of first-met bad mark-
ings (FBMs) is computed, where an FBM is an illegal marking that
can be directly reached by firing a transition at a legal marking.
That is to say, an FBM is within the DZ and represents the very first
entry from the LZ to the DZ. Uzam and Zhou also develop an
iterative approach to prevent deadlocks in a net model. An FBM is
forbidden by using a place invariant (PI) based control place
synthesis method [62]. Once all FBMs are forbidden, the controlled
system is live. This approach is easy to use since it does not require
to compute control places by solving linear programming pro-
blems. However, it cannot guarantee the behavioral optimality of
the obtained supervisor. Motivated by Uzam and Zhou's work [54],
the work in [6] develops a maximally permissive deadlock control
method such that a control place is computed by solving an
integer linear programming problem (ILPP) while an FBM is pro-
hibited but no legal markings are forbidden. The process cannot
terminate until all FBMs are forbidden. Then, we can obtain a
supervisor with all legal markings reachable in the resulting
controlled net model. Meanwhile, a marking reduction approach is
proposed to reduce the number of markings that need to be
considered. Thus, the number of constraints in the ILPP can be
reduced. In [7,8], ILPPs are proposed to design optimal supervisors
with the minimal number of control places. The work [7,8] can
successfully handle the behavioral permissiveness and structural
complexity problems but suffers from the computational com-
plexity due to the existence of too many constraints in the ILPPs.

All the above studies based on Petri nets are in the framework
of pure net models. However, there exist some Petri net models
that cannot be optimally controlled by pure net supervisors [68].
Self-loops are a classical non-pure Petri net structure. A self-loop
contains two arcs ðp; tÞ and ðt; pÞ connecting a place p and a tran-
sition t. Self-loops are used in several papers [18,42,48,54,55,57]
for structural reductions, systems synthesis, system modeling, etc.
In the previous work [11], self-loops are used to design maximally
permissive supervisors to handle deadlock problems in FMSs.
Similar to the theory of regions [25,52], we prevent deadlocks by
implementing all MTSIs of a net to be controlled. For an MTSI
ðM; tÞ, we assume that there is a self-loop associated with t in a
control place. Then, an ILPP is formulated to design the control
place. The constraints in the ILPP can ensure that t is disabled at M
and no legal marking is forbidden. Meanwhile, no arcs in the LZ of
the net model are removed by the self-loop in the control place.
The objective function is used to maximize the number of t-critical
MTSIs implemented by the control place, where a t-critical MTSI is
the one with t as its paired transition. Experimental results in [11]
show that Petri net supervisors with self-loops can optimally
control the net models that cannot be optimally controlled by a
pure net supervisor. Thus, Petri nets with self-loops are more
powerful than pure nets in modeling and controlling FMSs.

In this paper, we aim to reduce the structural complexity of the
previous work [11]. Instead of one self-loop in one control place,
we allow multiple self-loops in a control place. We assume that a
control place has a self-loop for each critical transition. A transi-
tion t is said to be critical if there exist MTSIs such that t is the
paired transition. Then, we propose an ILPP to compute the control

place that can implement as many MTSIs as possible. Thus, the
obtained supervisor is structurally simple. We also proposed
another ILPP to obtain all control places at a time. The constraints
are designed to ensure that each MTSI is implemented by at least
one control place and the objective function can minimize the
number of control places. As a result, all control places can be
obtained by solving only one ILPP and the obtained supervisor is
structurally minimal in the sense of the number of control places.
A drawback of the proposed methods is that they may fail to find a
solution if the proposed ILPP for a given net model has no solution.
In summary, we reach the following contributions in this work:

(1) In the case that a control place can have multiple self-loops, an
ILPP is developed to design an optimal control place with a
self-loop for each critical transition. The constraints in the ILPP
are used to make all legal markings reachable in the controlled
system and the objective function can ensure that the com-
puted control place implements as many MTSIs as possible.
Based on the proposed ILPP, an iterative deadlock prevention
policy is developed, where a control place is designed at each
iteration and the process carries out until all MTSIs are
implemented. Hence, we can obtain an optimal supervisor
with a small number of control places.

(2) In order to minimize the number of control places in the
obtained supervisor, we formulate an ILPP to design a set of
control places with self-loops and its objective function is used
to select the minimal number of control places. As a result, we
can obtain an optimal supervisor with the minimal number of
control places. The proposed ILPP can lead to a non-iterative
deadlock control policy since it can find all control places to
implement all MTSIs by solving only one ILPP.

(3) The proposed approaches are applicable to all FMS-oriented
classes of Petri net models in the literature, including PPN
[1,26,60], S3PR [2], ES3PR [49], S4PR [50], SnPR [22], S2LSPR
[44], S3PGR2 [45], and S3PMR [28].

The rest of this paper is organized as follows. Section 2 briefly
recalls some basics of Petri nets. In Section 3, we propose two
ILPPs to design optimal supervisors with compact structures and
an illustrative example is presented to show the applications of
the proposed methods in detail. Some examples from the litera-
ture are provided in Section 4 to show the control performance of
the proposed methods. Finally, we conclude the paper in Section 5.

2. Preliminaries

This section only recalls the basics of Petri nets. More details
can be found in [6,7,11,42].

A Petri net [42] is a four-tuple N¼(P, T, F, W) where P is a set
of places and T is a set of transitions with P \ T ¼∅, and FD ð
P � TÞ [ ðT � PÞ is a flow relation of the net. W : ðP � TÞ [ ðT �
PÞ-N assigns a weight to an arc: Wðx; yÞ40 if ðx; yÞAF , and
Wðx; yÞ ¼ 0, otherwise, where x; yAP [ T and N is the set of non-
negative integers. �x ¼ fyAP [ T j ðy; xÞAFg is the preset of x and
x� ¼ fyAP [ T j ðx; yÞAFg the postset of x. A marking is a mapping
M : P-N where M(p) denotes the number of tokens in place p.
A net is pure (self-loop free) if 8ðx; yÞAðP � TÞ [ ðT � PÞ, Wðx; yÞ
40 implies Wðy; xÞ ¼ 0. The incidence matrix ½N� of a net
N is a jP j � jT j integer matrix with ½N�ðp; tÞ ¼Wðt;pÞ�Wðp; tÞ.
A transition tAT is enabled at marking M, denoted as M½t〉, if
8pA�t , MðpÞZWðp; tÞ. Once a transition t is enabled at M and
fires, it yields a new marking M0, denoted as M½t〉M0, where
M0ðpÞ ¼MðpÞ�Wðp; tÞþWðt; pÞ. The set of reachable markings of
net ðN;M0Þ is denoted by RðN;M0Þ and its reachability graph is
denoted as GðN;M0Þ. A transition tAT is live at M0 if
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