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a b s t r a c t

This paper gives new insight and design proposals for Predictive Functional Control (PFC) algorithms.
Common practice and indeed a requirement of PFC is to select a coincidence horizon greater than one for
high-order systems and for the link between the design parameters and the desired dynamic to be weak.
Here the proposal is to use parallel first-order models to form an independent prediction model and
show that with these it is possible both to use a coincidence horizon of one and moreover to obtain
precisely the desired closed-loop dynamics. It is shown through analysis that the use of a coincidence
horizon of one greatly simplifies coding, tuning, constraint handling and implementation. The paper
derives the key results for high-order and non-minimum phase processes and also demonstrates the
flexibility and potential industrial utility of the proposal.

& 2015 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Predictive functional Control (PFC) has been very successful in
industry (e.g. [1,2]) and yet surprisingly received very little inter-
est in the academic literature [3,10,11,15]. A likely reason for this is
that researchers in predictive control have focussed on proofs of
issues such as guarantees of stability [6,18] and feasibility, robust
stability [4], parametric methods [7] and more recently robust
feasibility in the presence of bounded disturbances [9]. It should
be noted that PFC techniques are much simpler to code and
implement than conventional predictive control methods [3,8,15]
and thus PFC is best viewed as an alternative to PID or other low
level control law where the cost per control law is necessarily
small but nevertheless one may desire attributes such as sys-
tematic constraint handling. PFC allows systematic as opposed to
ad hoc constraint handling and thus is often preferred to PID
approaches for scenarios where constraint handling is challenging.
Clearly comparisons with conventional predictive control such as
Dynamic Matrix Control are not appropriate as those, by defini-
tion, can give better performance, but of course at much
higher cost.

A main selling point of PFC is that the design is done by
choosing a target behaviour (equivalently closed-loop pole/time
constant). If there is a strong link between the user choice and the
behaviour that results, this is an intuitive and easy design tech-
nique, as compared to say PID. Moreover, PFC has a critical
advantage over PID approaches, that is, constraint handling can be
embedded systematically and with minimum coding/computa-
tion. However, the literature has given little attention to theore-
tical a priori guarantees of stability, feasibility or robustness for
PFC; of course some results do exist [12,17] and industrial users
always do practical assessments. This paper seeks to redress the
balance slightly by demonstrating some useful new theoretical
results for PFC which also extend the efficacy of tuning of the
approach.

1.1. Background on PFC

A conventional PFC has two tuning parameters: the position of
the coincidence point in the future (the coincidence horizon) and
the desired settling time t95%, also called TRBF. It is implicitly
assumed that the closed-loop response will become approximately
first-order with the target settling time, although in fact this can
only be assured if the coincidence horizon is one.

For higher-order aperiodic processes it is common to recom-
mend the coincidence point to be near to the inflection point of
the process step response [11], which is the place of maximum
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value of the impulse response. The idea is based on the fact that at
this point, the manipulated variable change has maximum effect.
However, in such a case the actual settling time will often not
match the desired settling time t95 so tuning becomes more
challenging as the direct link between designer choice and effect is
lost. One reason is that in case of higher-order processes, the
closed-loop response will not approximate a first-order response
closely and hence the relation to the settling time is not
straightforward [16].

1.2. Paper contributions

This paper will propose an alternative way to tune PFC for
systems with real poles. It will be shown that within the proposed
PFC design, the closed-loop poles can be selected as free para-
meters and this is a major advance on conventional PFC where
only the slowest closed-loop pole is selected by defining the set-
tling time and even that requires some trial and error and has no
guarantee of what is achievable. It is interesting to note that the
proposed method, in the unconstrained case, has some equiva-
lence with pole placement design, but a critical point is that it is
still based on prediction and allows systematic constraint handling
which is not the case for pole-placement designs! It is also note-
worthy that the proposed PFC method works with a coincidence
horizon of just one, which is contrary to the conventional advice
with classical PFC and also enables a significant reduction in
computing complexity.

Section 2 gives some background on PFC concepts, a conven-
tional law and demonstrates the tuning challenges. Section 3
introduces the proposed pole placement PFC approach for second-
order systems along with some analysis of the properties. Section 4
then generalises the approach to higher-order models and
emphasises the additional degrees of freedom which enable more
flexible tuning. The paper finishes with numerous examples which
demonstrate the attributes of the proposed algorithm and how
these compare with conventional PFC.

2. Background information on PFC

2.1. Target behaviour

PFC is based on the assumption that it is realistic to achieve
closed-loop behaviour close to a first-order system with a delay τ
(or h samples), time constant Tr and unit gain, for example:

rnðsÞ ¼ e� sτ

Trsþ1
rðsÞ; rnðzÞ ¼ z�hð1�λÞ

1�λz�1 rðzÞ ð1Þ

where r(s) and rnðsÞ are Laplace representations of the reference
signal and reference trajectory respectively and r(z) and rnðzÞ
corresponding to z-transform representations. In the following the
reference signal is taken to be a step of amplitude r. A typical
desired step response, with no delay, is plotted in Fig. 1 where the
pole is set at λ¼ 0:8 and the sample period is T ¼ 1. Equivalently,
industrial users use the notation of target closed-loop response
time (CLTR), that is about 3 time constants, where λ¼ e�T=Tr with
T being the sample period and Tr ¼ CLTR=3.

2.2. Coincidence point and degrees of freedom

Assuming the desired closed-loop behaviour is ‘known’ (as
illustrated in Fig. 1), then the objective is for output predictions
ypðkþ ijkÞ (the predicted value of yp at sample kþ i with prediction
made at sample k) to follow this target exactly. Assuming a non-
zero initial condition of yp(k), a first-order response with a known
asymptotic value r and decay rate λ can be written down explicitly

as follows:

ypðkþ ijkÞ ¼ r�½r�ypðkÞ�λi; i40 ð2Þ

PFC is not able to make all future predicted output values satisfy
(2) and so instead chooses a single sample instant in the future,
the so-called coincidence horizon ny, and ensures that the output
prediction matches the target response (2) at that point only (as
illustrated in Fig. 1 for ny¼5). Consequently the PFC law reduces to
(conceptually), enforcing the single equality:

ypðkþny jkÞ ¼ r�½r�ypðkÞ�λny ð3Þ

In order to manipulate the predictions, some degrees of freedom
(d.o.f.) are needed and these are conventionally the values of the
future inputs, uðkÞ;uðkþ1Þ;… . Within PFC, the coding and com-
putation requirements are deliberately very simple and thus, the
predicted future input is taken to be a constant, that is:

uðkÞ ¼ uðkþ1jkÞ ¼ uðkþ2jkÞ ¼⋯ ð4Þ

Thus the only d.o.f. is the proposed value u(k).

Remark 1. The target behaviour (2) and control law requirement
(3) can be coded by inspection. Where the system has a delay ‘h’,
the target behaviour should be modified slightly to:

ypðkþnyþhjkÞ ¼ r�½r�ypðkþhjkÞ�λny �h
:

The reader will note that both output terms are based on values h
samples further ahead.

A potential weakness of PFC is the simplicity of control law (3).
The user needs to be sure that matching a single point implies the
rest of the response is also closely matched to the target behaviour.
It has been shown [11,16] that this is the case for first-order sys-
tems only. Hence this paper proposes a modified PFC algorithm,
such that the result can be extended to some higher-order systems
where common understanding is that the best value for ny can
only be found by trial and error (and indeed that assumes a good
choice exists). It is notable that for non-minimum phase systems it
is intuitively obvious that ny must be greater than the time of the
inverse response part but how much greater is not obvious. This
paper shows how such a requirement can be avoided thus
enabling more systematic tuning.
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Fig. 1. Target step response rnðzÞ with pole of 0.8 and illustration of coincidence
with output prediction y at a coincidence horizon of 6.
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