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Abstract

Follower loads, i.e. loads which depend on the boundary displacements by definition, frequently occur in finite deformation bound-
ary-value problems. Restricting to axisymmetrical applications, we provide analytical and numerical solutions for a set of problems in
compressible Neo-Hookean materials so to serve as benchmark problems for verifying the accuracy and efficiency of various FE methods
for follower load applications. Thereafter, the weak formulation for the follower-load in 3-D domain is reduced to an axisymmetrical
setting, and, subsequently, consistently linearized in the framework of p-FEMs, exploiting the blending function mapping techniques.
The set of axisymmetric benchmark solutions is compared to numerical experiments, in which the results obtained by a p-FEM code
are compared to these obtained by a state-of-the-art commercial h-FEM code and to the ‘‘exact’’ results. These demonstrate the efficiency
and accuracy of p-FEMs when applied to problems in finite deformations with follower loads.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Problems of continuum mechanics are usually associ-
ated with large deformations and large strains, i.e. the
length, shape and orientation of the domain’s boundary
changes during these highly non-linear loading processes.
Cold Iso-static Pressing (CIP) of metal powders is a typical
example of such problems, in which the tractions on the
boundary and their directions, due to the applied pressure,
change according to the deformation. So far, verification
examples are unavailable in general, and numerical

approximations, usually by finite element methods
(FEMs), are sought.

Follower-loads have been addressed for over three dec-
ades and implemented in various low-order FEMs (also
known as h-FEMs), see e.g. [1–4]. However, to the best
of our knowledge no analytical solutions for finite defor-
mations are available for compressible material models,
which are commonly used in FE codes, and that may serve
as benchmark problems for verification of the numerical
solvers. For this reason, the first step herein is to derive
simple analytical and comparable solutions for axisymmet-
ric problems which may serve as benchmark problems to
assess the accuracy and efficiency of numerical approxima-
tions. In the second step, we concentrate our attention on
follower loads (also known as ‘‘deformation-dependent’’,
or ‘‘path-following’’ loads) in the framework of high-order
FEMs (p-FEMs) [5,6], which have been shown to perform
well for finite deformations analyses [7]. Following [3], the
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weak formulation associated with the follower-load in
three-dimensional domain is reduced to an axisymmetrical
setting, and, subsequently, consistently linearized in the
framework of p-FEMs, exploiting the blending function
mapping techniques. A set of axisymmetric numerical
experiments is then addressed, in which the results obtained
by a p-FEM analysis are compared to these obtained by a
state-of-the-art commercial h-FEM code and to ‘‘exact’’
results. These demonstrate the efficiency and accuracy of
p-FEMs when applied to problems in finite deformations
with follower loads.

We start with notations and by deriving analytical solu-
tions to finite deformation axisymmetric problems in Sec-
tion 2. A compressible hyper-elastic material described by
a Neo-Hooke type constitutive relation and loaded by pres-
sure boundary condition (follower load) is considered. For
these example problems we provide analytical solutions
and numerical approximations computed by the shooting
method for solving the underlying two-point boundary-
value problem. In the sequel, these solutions serve as
benchmark examples. Section 3 compiles the theoretical
basis for the implementation of pressure loads into a FE
code. In this section, we derive the weak form associated
with the follower load for a three-dimensional domain,
and present the consistent linearization of it. This results
in two terms – a non-linear form, and a bi-nonlinear form.
These two terms are restricted to axisymmetric domains.
The formulation for p-axisymmetric elements is then pro-
vided in Section 4. We start this section by briefly present-
ing the special features of p-FE methods followed by a
more detailed discussion on the implementation of the fol-
lower loads in p-FE framework. The iterative scheme for
the solution of the non-linear problem is discussed. The
efficiency and accuracy of our implementation is demon-
strated in Section 5 on five example problems, and com-
pared to the commercial h-FE code Abaqus.1

2. Verification examples in axisymmetric domains

In the following, we generate analytical/semi-analytical
solutions for axisymmetric domains, based on constitutive
assumptions of compressibility and isotropy. A brief
description of notations for finite strain hyper-elasticity
is provided followed by derivation of several analytical/
semi-analytical solutions that serve as benchmarks against
which the FE implementation can be verified.

The basic quantity is the deformation gradient
F ¼ GraduðX ; tÞ ¼ oukðX 1;X 2;X 3;tÞ

oX K gi � GK , where x = u(X, t)
defines the placement of the material point X at time t.
XK, k = 1,2,3, are material (curvilinear) coordinates, gi

are tangent and GK gradient vectors in current and the ini-
tial configurations. Since the most general strain-energy
function for isotropic hyper-elastic material w(C) =

W(IC, IIC,IIIC) or w(b) = W(Ib, IIb, IIIb) depends on the
invariants of the right Cauchy–Green tensor C = FTF, or
the left Cauchy–Green tensor b = FFT, we define

IC ¼ trC ; IIC ¼
1

2
ððtrCÞ2 � trC2Þ;

IIIC ¼ det C ¼ ðdet FÞ2 ¼: J 2; ð1Þ

Ib ¼ trb; IIb ¼
1

2
ððtrbÞ2 � trb2Þ;

IIIb ¼ det b ¼ ðdet FÞ2 ¼: J 2; ð2Þ

where trC ¼ CN
N (equivalently, trb ¼ bn

n) symbolizes the
trace operator. In the current configuration the Cauchy
stress tensor r reads

r ¼ 2qR

J
dwðbÞ

db
b ¼ 2qR

J
b

dwðbÞ
db

¼ a0I þ a1bþ a2b2 ð3Þ

where qR is the density in initial configuration and

a0 ¼ 2qR
oW

oIIIb

III
1=2
b ;

a1 ¼ 2 qR
oW
oIb

þ qR
oW
oIIb

Ib

� �
III
�1=2
b ;

a2 ¼ �2qR
oW
oIIb

III
�1=2
b : ð4Þ

Here, use is made of

dIb

db
¼ I ;

dIIb

db
¼ IbI � b;

dIIIb

db
¼ IIIbb�1 ¼ adjb; ð5Þ

which result from the application of the chain rule. The
above relations are valid for any isotropic hyper-elastic
material. We consider herein the simplest strain-energy
function (SEF) of Neo-Hooke type:

qRwðCÞ ¼
K
2
ðJ � 1Þ2 þ c10ðIC � 3Þ ð6Þ

¼ K
2
ðIII

1=2
C � 1Þ2 þ c10ðIC III

�1=3
C � 3Þ: ð7Þ

IC ¼ IC III
�1=3
C defines the first invariant of the unimodular

right Cauchy–Green tensor C ¼ ðdet CÞ�1=3
C resulting

from the multiplicative decomposition of the deformation
gradient into a volumetric and an iso-choric part (see [8]
and the literature cited therein). The specific SEF has been
chosen because it describes a compressible deformation
and is implemented in many standard FE codes. Previous
studies addressing closed form solutions for compressible
materials under finite deformations, see for example [9–
11], consider special SEFs different than the common ones
in standard FE codes.

The invariants of C and b are equivalent so in the fol-
lowing we mainly use b

qRwðbÞ ¼
K
2
ðJ � 1Þ2 þ c10ðI�b � 3Þ ð8Þ

¼ K
2
ðIII

1=2
b � 1Þ2 þ c10ðIbIII

�1=3
b � 3Þ: ð9Þ

For the Neo-Hooke models (8) and (4) are explicitly
expressed as:

1 Abaqus is a trademark of ABAQUS, Inc., Rising Sun Mills,
Providence, RI, USA.
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