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a b s t r a c t

This paper investigates the problem of optimal tracking performance of networked control systems
(NCSs) with quantization and packet-dropouts. The system under consideration is linear time-invariant
(LTI), multi-input multi-output (MIMO), where an H2 norm of error signal between the reference input
and the system output is used as the tracking performance index. The impacts of packet-dropouts in the
communication channel and the quantized input and output are studied. The goal is to obtain the
minimal error in tracking a random signal, by searching through all possible stabilizing two-parameter
controllers. It is shown that, the minimum value of tracking error is closely related to the reference input
signal direction, the non-minimum phase zeros and unstable poles of the given plant, including the
locations and directions. We also demonstrated the quantization error and the packet-dropouts may
degrade the tracking performance. A typical example is given to evaluate the theoretical results.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the past decade, the performance limitations of networked
control systems (NCSs) has gained considerable attention [1,2],
which can help researchers to understand how the performance of
the systems may be intrinsically constrained by the characteristics
of the plant. For tracking performance of the classical systems, it is
generally known that the minimal tracking error depends upon
the non-minimum phase zero, the unstable poles and the time
delays in the plant [3].

NCSs with distributed sensors, controllers and actuators have
been produced as the rapid development of network technology
[4–6]. These systems have significant advantages in engineering
applications such as networked direct current motor and tele-
medicine [7,8]. However, the controllers and the plants to be
controlled in the NCSs often communicate with each other in a
non-ideal manner due to long distance communication channels.
Thus many factors such as time-delay [9,10], packet-dropouts
[11–13], quantization [14,15] will inevitably bring some adverse
effects on the performance of system, and even worse they may

cause the systems instability. In [16], assuming only one node can
access the network and send its information the authors in-
vestigate the stability of NCSs with time-varying transmission in-
tervals and time-varying transmission delays. A new linear de-
layed delta operator switched system model has been proposed in
[17] to describe the networked control systems with packet-
dropouts and network-induced delays, and a verification theorem
has been given to show the solvability of the stabilization condi-
tions by solving a class of finite linear matrix inequalities (LMIs).
Other related works can also be found in [18–20].

The results obtained in previous works have provided valuable
insight into about the relationship between stability, performance
and communication constraints. However, it should be noted that
signal quantization is an essential part of the communication
process, and packet-dropouts are typical features associated with
the networked control systems. Thus, it is meaningful and sig-
nificant to reveal the quantitative relationship between the mini-
mal tracking error and communication constraint. The goal of this
work is to adopt the two-parameter controllers to investigate the
optimal tracking performance of the networked control systems
with quantization and packet-dropouts. The tracking performance
can be measured by the energy of the error signal between the
output of the plant and the reference signal. Two cases are con-
sidered in this paper. In the first case, the system sensor is far away
from the plant while the controller is near to the plant. In the
second case, the setting is the opposite. The adopted model can be
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found in many real systems. For example, in a robot surgery sys-
temwith remote monitoring, the patient is the plant and the robot
is the controller. The remote expert obtains information via the
network transmission, and the instruction of the expert is then
returned to the robot via the network transmission. Main con-
tributions of this paper can be summarized as follows. Firstly,
explicit expressions are given to show the relationship between
tracking performance and intrinsic characteristics of the plant.
Secondly, by using additive white noise to model the quantization
error, and a binary stochastic process to model the packet the
quantization and packet dropouts' effects on tracking performance
are quantitatively revealed. Thirdly, the results obtained in this
paper may give some guidance for the design of optimal
controllers.

The remainder of this paper is organized as follows. In Section 2,
the notations are defined, the Youla parameterization of stabilizing
controllers is introduced, and a brief narrative of all-pass factors of
the non-minimum phase transfer function matrices is provided.
Section 3 provides the formulation and solution of the problem of
optimal tracking performance with quantization output and packet-
dropouts. In Section 4, the optimal tracking performance with
quantization input and packet-dropouts is further investigated. An
illustrative example is given in Section 5. Finally, the paper is con-
cluded in Section 6.

2. Preliminaries

The notations used throughout in this paper are described as
follows. z̄ denotes the conjugate of a complex number z. The
transpose and conjugate transpose of a vector u and a matrix A are
denoted by u u,T H and A A,T H , respectively. The open unit disc is
denoted by { }= ∈ <D z C z: : 1 , the closed unit disc is denoted by

{ }¯ = ∈ ≤D z C z: : 1 , the unit circle is denoted by { }∂ = ∈ =D z C z: : 1 ,
and the complement of D̄ by { }¯ = ∈ >D z C z: : 1c . Moreover, let · 2

denote the Euclidean vector norm and · F the Frobenius norm,
‖ ‖ = ( )G G G: trF

H2 . The Hilbert space 2 is defined as
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, where F

and G are the transfer function matrices in the Hilbert space. It is
well known that 2 admits an orthogonal decomposition into the
subspaces 2 and ⊥
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It follows that for any ∈F 2 and ∈ ⊥G 2 , we have =F G, 0. It is
worth pointing out that the same notation · 2 will be used to
denote these norms, and the meaning of each of these norms will
be cleared from the context. Let  ∞ denote the set of all stable,
proper, and rational transfer function matrices. The expectation
operator is denoted by { ·}E . Finally,

∠( ) =u v
u v
u v

cos , : .
H

where ∠( )u v, is the principal angle between the two subspaces
spanned by u and v.

In this section, some important factorizations are described
that will be frequently used. The packet-dropouts' probability in

the communication channel is denoted by α and thus α≤ <0 1.
For the rational transfer function matrix α( − ) ( )G z1 , the right and
the left coprime factorizations are given by

α( − ) ( ) = = ˜ ˜ ( )− −G z NM M N1 , 2.11 1

where ˜ ˜ ∈ ∞N M N M, , , and satisfy the double Bezout identity
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for some ˜ ˜ ∈ ∞X Y X Y, , , . Then, all the stabilizing two-parameter
compensators K can be characterized by the following set [21]:
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where K1 and K2 are two independent controllers that will be
designed. Assume that G is right invertible, which implies that G(z)
has a right inverse for some z. For a right-invertible G(z), each
of its nonminimum phase zeros is also one for N(z). Denote

∈ = …+s i N, 1, ,i s as the non-minimum phase zeros of G(z),
where Ns is the number of non-minimum phase zeros, and ηi are
the corresponding unitary zero direction vectors. Then it is pos-
sible to factorize N(z) as

( ) = ( ) ( ) ( )N z L z N z , 2.4m

where L(z) is an all-pass factor and Nm(z) is the minimum phase
part of N(z). A useful all-pass factor is given by
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where Ui are matrices that together with ηi form a unitary matrix.
If the plant G(z) has unstable poles ∈ = …+p k N, 1, ,k p, where Np

is the number of the unstable poles and Λ is a real diagonal matrix,
then it is possible to factorize Λ˜ ( )M z as

Λ˜ ( ) = ˜ ( ) ˜( ) ( )M z M z B z , 2.6m

where ˜ ( )M zm is the minimum phase and ˜( )B z is an all-pass factor.
Specifically, ˜( )B z can be constructed as follows:

⎡⎣ ⎤⎦
⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥∏˜( ) = ˜ ( ) ˜ ( ) =

=

−
− ¯B z B z B z w W

I

w

W
,

0

0
,

k

N

k k k k

z p
p z k

H

k
H

1

1
p k

k

where wi are unitary vectors obtained by factorizing the zeros one
at a time, and Wi are the matrices that together with wi form a
unitary matrix. The tracking performance index of the system is
defined as

{ }= ( ) ( ) ( )J E e k e k: , 2.7T

where ( ) = ( ) − ( )e k y k r k . The minimum tracking error achievable
by all possible stabilizing controllers is then determined as


* =

∈
J J: inf ,

K K,1 2

where  denotes the set of all stabilizing two-parameter
controllers.

3. Tracking performance with quantization output and packet
dropouts

In the section, the problem under consideration is depicted in
Fig. 1, in which G denotes the plant and ⎡⎣ ⎤⎦K K1 2 are the two-
parameter controllers. Q is used to model the uniform quantizer,
which takes uniform quantization interval as shown in Fig. 2. The
quantizer is a crucial part in the process of signal transmission. dr
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