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We propose a fuzzy reinforcement learning (RL) based controller that generates a stable control action by
lyapunov constraining fuzzy linguistic rules. In particular, we attempt at lyapunov constraining the
consequent part of fuzzy rules in a fuzzy RL setup. Ours is a first attempt at designing a linguistic RL
controller with lyapunov constrained fuzzy consequents to progressively learn a stable optimal policy.
The proposed controller does not need system model or desired response and can effectively handle
disturbances in continuous state-action space problems. Proposed controller has been employed on the
benchmark Inverted Pendulum (IP) and Rotational/Translational Proof-Mass Actuator (RTAC) control
problems (with and without disturbances). Simulation results and comparison against a) baseline fuzzy
Q learning, b) Lyapunov theory based Actor-Critic, and c) Lyapunov theory based Markov game controller,
elucidate stability and viability of the proposed control scheme.

© 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Real world systems are inherently nonlinear; designing a con-
troller for a truly nonlinear system is quite a challenge. In most of
the cases, one requires either partial or full system information for
controller design. Conventional controller design techniques are
best when one has access to the system model, but it is pretty
difficult to construct a flawless model of any system without
making idealizing assumptions. System identification techniques
[1] may be employed to get an approximate model and a model
based control technique [2] could be used. Alternatively, model
free control techniques could be used where no system informa-
tion is available [3].

An important issue in the control of uncertain nonlinear sys-
tems is that they exhibit multiple equilibrium states making their
stability analysis significantly complex. Several approaches have
been proposed in literature to guarantee stability of the designed
controller, e. g., Describing function, and Lyapunov's method [2].
Lyapunov's Stability theorem is the most general and widely used
one for establishing stability of controllers for nonlinear systems.

In a recent work [5], lyapunov theory has been used for de-
signing a stable RL controller. The authors have proposed a lya-
punov theory based Markov game fuzzy controller. The approach
seeks to infuse stability in the Markov game based RL control by
hybridizing it with a lyapunov theory based action. Lyapunov
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theory based Markov game controller is tested on three bench-
mark control problems. The approach, though good, has much
higher computational complexity because at each iteration; a
game is played between the controller and the disturbances which
is solved using linear programming. In contrast, our approach does
not involve any linear programming solution, and is conceptually
simpler.

In another recent approach [6], authors have proposed a policy
iteration based actor critic [8] RL formulation. The technique uses
lyapunov theory for generating a stable control policy. The ap-
proach is computationally expensive as it uses a two step RL based
optimization process: a) value function approximation and b)
policy iteration. Furthermore, there are convergence issues when
function approximators such as neural network or fuzzy systems
are used as it is a difficult proposition to make two function ap-
proximators converge in tandem. Our approach, on the other
hand, is a model free single step value iteration based RL
technique.

Reinforcement learning [8] has evolved as an effective techni-
que for designing self learning, model free, adaptive controllers. An
important advantage of RL paradigm is that it puts virtually no
condition on the system, i.e., the system could be nonlinear, time
varying, stochastic, and even the desired response is not a pre
requisite for designing an efficient controller. The controller
evolves based on online experiential information gained while it
attempts to control an unknown system. However, most of the RL
controllers designed so far [4] do not offer any guaranty on sta-
bility of the controlled system. Our attempt herein is to address
the stability issue in designing of RL based controllers by using
lyapunov constrained linguistic rules, in particular, the rule
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consequents. Ours is a first attempt at designing not only a lin-
guistic fuzzy RL control but also a stable one based on the lyapu-
nov theory.

In our earlier works, we sought to infuse stability into RL based
controllers by (i) hybridizing RL based control action with a lya-
punov theory based action thereby generating a stable hybrid
controller [5], and (ii) choosing an action from the controller's
action set that satisfies lyapunov's stability condition [7]. Our
current work injects two novel ideas into the RL based controller
formulation: a) Proposed controller is a linguistic RL controller, i.e.,
controller discovers an optimal linguistic action and not an opti-
mal discrete action (as in the case of a conventional RL controller),
and b) The optimal linguistic action satisfies lyapunov stability
condition or we lyapunov constrain the linguistic consequent of a
fuzzy rule. Finally, the control action to be applied to the system is
derived from this lyapunov constrained linguistic action. Some
other key contributions of our approach are: c) it is simple to
implement with just one function approximator unlike the actor-
critic RL formulation [8] wherein simultaneous tuning of two
function approximators is required to achieve an efficient con-
vergence to the optimal solution, d) our approach is scalable to
higher dimensional or complex problems as the computational
burden does not increase exponentially with the dimensionality of
the system.

The approach proposed herein is novel in the above aspects in
the overall RL based control paradigm. We have used fuzzy in-
ference system as a generic function approximator to deal with the
“curse of dimensionality” issue which is a standard practice in the
design of RL based controllers for continuous state-action do-
mains. Of course, any other function approximator such as neural
network [8] or support vector machines [9] could be used. Our
proposed method, after suitable problem specific modifications,
can be used in other applications as well, e.g., for decoupled
control of bearingless Induction motors [10] and for countering
unbalanced vibrations of bearingless rotor [11].

To test our proposed approach, we employ it on two standard
benchmark control problems: a) an Inverted pendulum, and b)
Rotational/translational proof-mass-actuator system. We compare
performance of the proposed fuzzy lyapunov reinforcement
learning control against (i) baseline fuzzy Q learning control
(conventional), and some recent lyapunov theory based RL con-
trollers: (ii) lyapunov actor critic RL control and (iii) lyapunov
Markov game based control. Rest of the paper is organized as:
Section 2 has brief but relevant details on fuzzy Q learning, lya-
punov theory based actor critic RL and Markov game based hybrid
control. Section 3 gives a detailed presentation of our proposed
lyapunov fuzzy RL approach. Section 4 gives details of the systems
used to test our proposed approach, i.e., Inverted Pendulum and
RTAC with parameters thereof. Section 5 gives simulation results
and comparison against fuzzy Q learning and other lyapunov
theory based RL controllers and Section 6 concludes the paper.

2. Reinforcement learning

Reinforcement learning is a part of machine learning [4] and
has roots in the human learning. In reinforcement learning, an
agent searches the space of all possible policies and receives
feedback on the results of the selection made. This information
must infer a“good” policy or ideally an optimal policy [12]. We can
also call RL as action based learning and is highly goal oriented
[13]. The terms agent, environment and action used in RL is same
as controller, system and control signal in the control engineering
literature.

In RL, objective of the agent is to maximize or minimize total
accumulated reward or cost incurred in the process of taking

actions resulting in a sequence of states or the Markov chain. RL
could be model based as in Actor-Critic configuration or model
free as in Q-learning and SARSA. Whether model based or model
free, all RL techniques belong to what may be called Temporal
Difference (TD) methods. Our approach is motivated by the Q
learning algorithm which is a model free, off policy incremental
learning approach with proven convergence. Basically, RL is a
technique to optimize decisions in a sequential decision making
problem. For further details on the RL paradigm, we refer the
reader to [8].

2.1. Q learning

Q-learning [14] is an off policy learning algorithm and it aims at
estimating optimal Q-value Q*. Q-value is defined as the accu-
mulated reward obtained on taking action ‘a’ in state ‘s’. Q-value is
also known as state action value and is represented by Q(s,a). In
estimating Q*, the agent learns optimal policy via interaction with
the system where policy signifies a mapping from state to action.

Q*(s, a) = E[c(s, a) + A min Q*(s’, a)]
aeA (1)
where E is the expectation operator, s’ = Psr (s, a) is successor state
and Ps is the state transition probability, 1 € (0, 1] is discount
factor and signifies relationship between current and subsequent
cost, c(s,a) is the cost incurred on taking action ‘a’ in state ‘s’.

In Q learning the expectation operator is replaced by a single
sample, making Q learning a stochastic iterative algorithm. More
specifically, the expectation which is based on probability of
transition is replaced by a "bootstrapping” of successive samples
obtained online while the agent interacts with the system or en-
vironment. Q learning update is given by:

Q™ ah <« Q" am + E[c", ™y + 4 min_ Q™ a) — Q(s?, a]
asA(s") @

where s" and s"*! are the state at n™ and (n + 1)™ iteration, a" is
the action taken at iteration n, ¢ € (0, 1] is learning rate. This up-
date converges to optimal Q values. Proper decrement in ¢ and
infinitely large number of visits to each state-action pair is re-
quired to get Q* from Q-values.

2.2. Fuzzy Q learning

Q learning requires one to store all visited state action pairs in
the form of a lookup table. This poses a big problem in terms of
memory size required to store all Q values for a large state-action
space. Another problem arises in the form of computational
complexity as the dimensionality of the state space increases. The
lookup table based approach becomes infeasible when the state
space is continuous. To counter this problem, generalization
techniques [8] like neural network and fuzzy inference system
(FIS) have been employed wherein the approximation archi-
tecture, i.e., neural network or FIS replaces the lookup table. Our
approach is motivated by a Q learning implementation through FIS
termed fuzzy Q learning. Fuzzy Q learning (FQL) entails rules of the
form:

Ry IfsfisLyand.. and sk isL®  thena = g with q(n, 1)

or a=a, withq(n, 2)

or a= ap with q(Tl. P) (3)

Here linguistic term for input variable s¥ is L? in the rule R,
having membership function - sk = {sl", sk, v sk } system
state at instant k forms the input vector to FIS. Truth-value of each

rule yu(sk): [ (5¥) py(5¥)... . uy(s)1 for N rules is calculated based
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