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a b s t r a c t

This paper presents a new model-free adaptive fractional order control approach for linear time-varying
systems. An online algorithm is proposed to determine some frequency characteristics using a selective
filtering and to design a fractional PID controller based on the numerical optimization of the frequency-
domain criterion. When the system parameters are time-varying, the controller is updated to keep the
same desired performances. The main advantage of the proposed approach is that the controller design
depends only on the measured input and output signals of the process. The effectiveness of the proposed
method is assessed through a numerical example.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Motivated by the ability to describe the complex behavior of
some physical phenomena, fractional calculus has been used in
many engineering fields such as modeling of physical systems [1–
4], control [5–7] and diagnosis [8].

In control theory, the use of fractional calculus has gained much
success among researchers. This great interest is motivated by the
robustness properties of the fractional differentiation. Many design
methods have been proposed in literature to deal with fractional or-
der control of systems. They are based on time-domain [9–13] or
frequency-domain approaches [14–17]. The most known ones are the
Oustaloup's CRONE approach [18] and the optimization-based meth-
ods initially developed by Monje et al. [15].

Among the developed frameworks, most of the proposed methods
in literature are model-based and even if they achieve a good ro-
bustness towards gain uncertainties, they are not robust towards the
pole uncertainties. On the other hand, these methods require the
knowledge of the process model (differential equation, transfer
function, state space). However, in many situations, the system model
may be unknown and/or time-varying. So, a fixed controller cannot
provide an acceptable closed-loop performances in all situations.
Thus, it is necessary to retune the controller parameters. In these
cases, the classical adaptive control can be used.

Several studies are focused on the application of the adaptive

control in the fractional case. The fractional order model reference
control (FO-MRAC) and the fractional adaptive control are devel-
oped in [19–22,12,13]. But, most adaptive control techniques are
typically supposed that the the system structure is a a priori
known and the parameters are needed to identification step. So, it
is necessary to go through the following steps of system experi-
ments: estimation of the parameters, computation of control
strategies then, implementation [22,21]. But, that the identifica-
tion-based control approaches are not very well adapted for sys-
tem control [23] for many reasons namely: the model con-
vergence, the system stability, the relation between the excitation
signal and the system response for control performances, etc.
Therefore, in these cases, a model-free adaptive control can be
used to avoid any explicit system identification procedure. It uses
only the input and output measurement data of the system.

The model-free adaptive control was introduced firstly for rational
case (see [24] and the reference therein for an overview) However,
despite its effectiveness, this approach has not yet well exploited the
robustness of the fractional order controller. Recently, in 2009, a model-
free adaptive control in the frequency domainwas proposed by Ionescu
et al. and applied to mechanical ventilation [25]. But, the mentioned
works suppose that the system is linear time-invariant and the frac-
tional order controller is designed based on closed-loop specifications
given by the reference model. They use some characteristics of the
system, of an integrator or a dead-time, etc. However, these informa-
tions about the system may not always be available. In addition, the
choice of the excitation signal and its frequency to identify the con-
troller presents a problem.This is because the non-obvious relation
between the excitation signal and the system response for control
performances [25]. In 2012, Villagra et al. has proposed a model-free
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fractional order PID control which is applied to DC motors in flexible
joints [26]. Even if this work is applicable to unstable linear time-un-
varying (LTI) systems, a systematic procedure that allows firstly to
analytically characterize the stable regions of the closed-loop system,
and thereafter to assign a set of specifications to a particular controller
configuration, is required.

Within this context, a model-free adaptive fractional order PID
control for a stable linear time-varying (LTV) systems is proposed
in this paper. It is based on a selective filtering to determine some
frequency characteristics (the gain and the phase) of the system
and, using the numerical optimization of frequency-domain cri-
terion, the fractional order PID controller is designed. If the system
parameters are time-varying, the controller is updated to keep the
same desired performances. This approach uses only the input and
output measurement data of the process.

In the case of unstable system, the estimation method using
selective filters still applicable but the design method should be
changed because it is a Bode-based design method which assume
that the system is stable in open-loop. This method improves the
robustness and ensures the iso-damping property of LTV systems.

The rest of this paper is outlined as follows: Section 2 presents a
brief mathematical background and illustrates the problem state-
ment. The fractional order PID controller is presented in Section 3. The
model-free adaptive fractional order control design is developed in
Section 4. In Section 5, the performances of the proposed scheme are
assessed through a numerical example. Finally, conclusions and some
perspectives are established in Section 6.

2. Preliminaries

2.1. Fractional calculus

Fractional calculus is a generalization of integer differentiation/
integration to a fractional order. There are several definitions of
fractional derivative in time-domain. The commonly one used is
the Grünwald-Letnikov definition [27].

Using the Grünwald-Letnikov definition, the μ-order fractional
differentiation of a continuous-time function f(t), ( ) =f t 0 for

≤t 0, is given by [27]
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Under zero initial conditions, the Laplace transform of μ-order
fractional differentiation of a continuous-time function f(t) is given by

{ }( ) = ( ) ( )
μ μD f t s F s , 3

where  ( )( )( ) =F s f t and s is the Laplace variable or the differ-
entiator operator.

A SISO fractional order system can be governed by the fol-
lowing fractional differential equation
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where ( )y ts and ( )y t are respectively the input and the output

signals and ( ) ∈a b,n m are the linear coefficients of the differ-
ential equation. The fractional orders αn and βm are allowed to be
non-integer positive numbers.

Applying the Laplace transform to the fractional differential Eq.
(4) yields to the fractional transfer function defined by
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2.2. Problem statement

Consider the fractional closed-loop of time varying-system
depicted in Fig. 1.

G(s) is the process transfer function which is supposed un-
known and time-varying. C(s) is the fractional order controller
transfer function. ys(t) and ( )y t0 are respectively the set-point in-
put and the continuous-time noise-free output.

The measurable output signal y(t) is eventually corrupted by an
additive white noise e(t) such that

( ) ( ) ( )= + ( )y t y t e t . 60

The control signal is given by

( ) ( ) ( )= + ( )u t u t v t , 7c

where uc(t) is the controller output and v(t) is an additive input
disturbance.

Consider the fractional open-loop transfer function defined by

( ) = ( ) ( ) ( )L s C s G s , 8

and the fractional closed-loop transfer function given by
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If the system model is known, a closed-loop system identification
techniques developed by Yakoub et al. [1] can be used to estimate the
system parameters and then design a suitable controller. However, if
the model is unknown and/or its parameters are time-varying, a
fractional order adaptive control as the Fractional Order-Model Re-
ference Adaptive Control (FO-MRAC), developed in [13,12,25], can be
used. But, for complex real systems, the system model is often diffi-
cult to estimate. To overcome this problem, a model-free adaptive
control without a parametric identification is developed in the next
section. It is based on selective filters to determine only some fre-
quency characteristics required for the controller optimization-based
design. The main feature of this approach is its implementation
simplicity and its effectiveness. The controller design uses only on the
measured input and output signals of the process.

In this following, the controller C(s) is a fractional proportional
integral derivative (PID) controller.

3. Fractional order PID controller

Recently, Podlubny has proposed a fractional order PID

Fig. 1. Fractional closed-loop time-varying system.
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