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a b s t r a c t

Several popular tuning strategies applicable to Model Predictive Control (MPC) schemes such as GPC and
DMC have previously been developed. Many of these tuning strategies require an approximate model of
the controlled process to be obtained, typically of the First Order Plus Dead Time type. One popular
method uses such a model to analytically calculate an approximate value of the move suppression
coefficient to achieve a desired condition number for the regularized system dynamic matrix; however it
is not always accurate and tends to under-estimate the required value. In this paper an off-line method is
presented to exactly calculate the move suppression coefficient required to achieve a desired condition
number directly from the unregularized system dynamic matrix. This method involves an Eigende-
composition of the system dynamic matrix - which may be too unwieldy in some cases –and a simpler
analytical expression is also derived. This analytical expression provides a guaranteed tight upper bound
on the required move suppression coefficient yielding a tuning formula which is easy to apply, even in
on-line situations. Both methods do not require the use of approximate or reduced order process models
for their application. Simulation examples and perturbation studies illustrate the effectiveness of the
methods in both off-line and on-line MPC configurations. It is shown that accurate conditioning and
improved closed loop robustness can be achieved.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) has been implemented widely
in the chemical and process control industries since its introduc-
tion in the 1970s [1–3]. Although a large number of different ap-
proaches to MPC have been formulated, two of the most popular
with practitioners have proved to be the Dynamic Matrix Control
(DMC) technique [4] and the Generalized Predictive Control (GPC)
technique [5]. Both schemes employ a receding-horizon approach
which minimizes, at each time step, a multi-stage quadratic cost
function involving the predicted future errors and weighted
magnitude of the applied incremental control moves. A typical
MPC controller has many tuneable parameters: aside from con-
siderations regarding the process parameterisation, the principal
ones of interest for DMC and GPC are the choice of sampling time
T, the length of the prediction horizon P and the control horizonM,
and also the value of the move suppression coefficient λ. The latter
parameter applies a weight on the magnitude of the projected
control moves in the objective function. Due to the complex re-
lationships between these tuneable parameters and the closed
loop system properties, many previous authors have suggested
‘tuning rules’ that allow a user to configure an MPC instance to
achieve a desired level of closed-loop performance [3–14]. This
paper is concerned with the selection of the move suppression
coefficient, which serves a dual purpose of conditioning the sys-
tem matrix before its inversion and suppressing aggressive control

actions [3–14]. This non-negative dimensionless parameter is
known to have a significant impact upon performance and ro-
bustness [4–8], and in practice proves difficult to tune empirically
(even for experienced control engineers) as recent work has
highlighted [12].

A variety of methods have been proposed to tune this para-
meter. In [11] the authors describe a procedure for iteratively
tuning λ for a GPC controller, assuming a Second Order Plus Dead
Time (SOPDT) process model. The chosen performance criteria are
that the closed loop poles satisfy certain bounds; at each iteration
of the search, fourth order polynomials are solved and the GPC
gains recomputed from quadratic formulae. In [12], the authors
propose to use the Nelder-Mead downhill simplex algorithm to
search for values of λ which minimize an objective criteria in
multivariable DMC controllers. The objective criteria that the au-
thors suggest are based upon the magnitude and shape of the
Manipulated Variables (MVs). It is suggested that one of the ways
that the aggressiveness of the controller is measured is by the
percentage of overshoot that occurs in each of the MVs following a
step setpoint change in reference; it is recommended that the
search aims to produce tunings with no more than 20% MV
overshoot following a step on any reference. This choice of metric
is limited to input/output relationships of Type 0, i.e. those which
are self-regulating, as the presence of one or more open-loop in-
tegrators renders the metric undefined. The authors in [9] describe
an analytical method to compute the required move suppression

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/isatrans

ISA Transactions

http://dx.doi.org/10.1016/j.isatra.2016.11.020
0019-0578/& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

Please cite this article as: Short M. Move Suppression Calculations for Well-Conditioned MPC. ISA Transactions (2016), http://dx.doi.org/
10.1016/j.isatra.2016.11.020i

ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/00190578
www.elsevier.com/locate/isatrans
http://dx.doi.org/10.1016/j.isatra.2016.11.020
http://dx.doi.org/10.1016/j.isatra.2016.11.020
http://dx.doi.org/10.1016/j.isatra.2016.11.020
http://dx.doi.org/10.1016/j.isatra.2016.11.020
http://dx.doi.org/10.1016/j.isatra.2016.11.020
http://dx.doi.org/10.1016/j.isatra.2016.11.020
http://dx.doi.org/10.1016/j.isatra.2016.11.020
http://dx.doi.org/10.1016/j.isatra.2016.11.020


coefficients to achieve a pre-specified closed loop performance for
FOPDT processes when the control horizon M is equal to either
1 or 2. The method has also been extended to multivariable pro-
cesses which can be approximated as a matrix of FOPDT responses
[10]. No considerations of numerical stability or smoothness of
control actions are considered in either method; extensions to
higher order system models and/or larger control horizons was
not considered in these works.

One method which has proved popular for calculation of the
move supression parameter was previously proposed by Shridhar
and Cooper [6]. A key contribution of this work was the identification
of the link between the condition number of the regularized Gramian
of the system dynamic matrix and the closed-loop performance and
robustness of the resulting controller. For its application, the method
requires an approximate First Order Plus Dead Time (FOPDT) model
of the controlled process to be obtained. This model is employed for a
number of reasons, principally to analytically calculate from its
parameters an approximate value of the move suppression coeffi-
cient to achieve a certain condition number C for the regularized
Gramian. The aim of this procedure is to ensure that ‘the condition
number is always bounded by a fixed low value’ [6]. The tuning
strategy, although principally developed for DMC, can also be applied
to control of FOPDT models with GPC [6] and has been extended to
multivariable MPC [7] and integrating processes [8]. However, the
requirement for low-order approximate process models renders the
method only suited to off-line MPC tuning for processes in which
such a model is reasonable. In addition, as will be demonstrated
through examples in a later section, the accuracy of the achieved
condition number is highly dependent upon the accuracy and va-
lidity of the low-order approximation; oftentimes the required move
suppression is underestimated, and the resulting condition number
exceeds that which is desired (in some cases by E100%).1 This
warrants the consideration of possible alternative methods to cal-
culate the move suppression coefficient directly from the employed
process model (i.e. avoid the need to utilize an approximate low-
order model) in order to achieve well-conditioned MPC [16].

In this paper, two methods are presented for this purpose. The
first method exactly calculates the required move suppression nee-
ded to achieve a given conditioning directly from the unregularized
system matrix. This method requires an Eigen decomposition of the
system matrix and is suitable for an off-line MPC design using a
suitable numerical software package. The second method involves a
simple analytical expression using only the trace of the unregularized
matrix and its square to obtain a tight upper bound on the required
value of move suppression, and is easy to apply. Simulation results
and perturbation studies verify that accurate conditioning and im-
proved closed loop robustness can be achieved. Before describing the
proposed methods, it must be stressed that the use of move sup-
pression (regularization) is not the only possible method to have
been proposed to improve the numerical properties and robustness
of MPC algorithms. Methods based upon Principal Components
Analysis (PCA) [15] or the use of a ‘shifted’ DMC algorithm [16] can
both achieve such goals and correct rank deficiencies in MPC con-
trollers without the need to obtain a reduced order approximation of
the actual progress dynamics [16]. However in this paper, the focus
will be upon move suppression only, and specifically improvements
to the methods proposed in the works [6–8].

The remainder of the paper is structured as follows. Section 2
introduces preliminaries. The methods to calculate the move sup-
pression parameter are presented in Section 3 of the paper. Section 4
presents simulation examples, perturbation studies and analysis to

illustrate the effectiveness of the proposed methods in on-line and
off-line situations. A short conclusion is given in Section 5.

2. Preliminaries

MPC algorithms employ a receding-horizon optimization of the
process input which minimizes a multi-stage quadratic cost
function at each time step. In the Single-Input-Single-Output
(SISO) case the cost function to be minimized at each discrete time
step t can typically be written as:
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In which ŷ(tþk|t) is a k-step ahead prediction of the process
output at time step t, dZ0 represents the integer part of the system
time delay (excluding the zero-order hold), r(k) is the value of a
known reference/setpoint sequence at step k, and the decision vari-
ablesΔu(k) represent the incremental change in the applied controls
at step k. The integer parameter M40 represents the length of a
short future control horizon, while the integer PZM represents the
length of the prediction horizon. The move suppression parameter
λZ0 introduces an additional weighted quadratic penalty on the
magnitude of the control moves into the objective function. The
principal difference between approaches such as DMC and GPC lies
in the assumptions made of the process and disturbance model, and
in the techniques employed to obtain the process predictions; the
latter also allows more flexibility in the choice of weights than that
shown in (1) - although (1) represents its typical ‘default’ config-
uration for industrial plant [5]. In the unconstrained case mini-
mization of (1) leads to an analytical expression for calculating the
projected optimal control moves at each time step, which surmounts
to solving the system of linear equations (GTGþλI)Δu(t)¼GTe(t),
where the M-vector Δu(t) represents the optimal control moves to
make at time t, G is the system dynamic matrix (of dimension P-by-
M) consisting of the shifted system step co-efficients arranged in
Toeplitz fashion. The vector e(t) represents, at time t, the future
(predicted) errors between the free trajectory of the process and the
desired trajectory along each step of the prediction horizon P. The
move suppression parameter λ appears in the solution as a reg-
ularization parameter applied to GTG, the Gramian of the system
matrix. As MPC is a receding-horizon control, only the first element
of the M-vector of optimal controlsΔu(t) is applied at time t. At time
step tþ1, the optimization is repeated to obtain Δu(tþ1) using the
newly acquired knowledge of the plant state and an updated set of
predicted errors e(tþ1). This process repeats indefinitely. For the
remainder of the current work, the focus is upon SISO processes,
with the understanding that the results also generalize to Multi-In-
put-Multi-Output (MIMO) systems. This generalization is possible
since for any MIMO system, it is possible to partition the dynamic
matrix into sub-blocks connecting each input-output pair [2,7]; the
proposed SISO method may then be applied to each such sub-block
in turn.

3. Move suppression calculations

3.1. Conditioning and robustness

Typically, for the implementation of MPC one desires the first
row of the left pseudo-inverse ‘gain’ matrix Gþ¼(GTGþλI)-1GT [2].
To obtain this gain vector, the inverse of the matrix (GTGþλI)-1 is
required; standard numerical techniques such as Gauss-Jordan
elimination can be employed to obtain it [2,17]. Let the un-
regularized dynamic matrix GTG be denoted by A, with the

1 Although this is in line with observations made in [14] (also cited in [12]), it
must be cautioned that the results presented in [14] do not seem reproducible and
the extent of the problem significantly over-estimated in this paper: please refer to
Appendix A for details.
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