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a b s t r a c t

Extremum-seeking scheme is a powerful adaptive technique to optimize steady-state system perfor-
mance. In this paper, a novel extremum-seeking scheme for the optimization of nonlinear plants using
fractional order calculus is proposed. The fractional order extremum-seeking algorithm only utilizes
output measurements of the plant, however, it performs superior in many aspects such as convergence
speed and robustness. A detailed stability analysis is given to not only guarantee a faster convergence of
the system to an adjustable neighborhood of the optimum but also confirm a better robustness for
proposed algorithm. Furthermore, simulation and experimental results demonstrate that the fractional
order extremum-seeking scheme for nonlinear systems outperforms the traditional integer order one.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Extremum seeking control (ESC) is an online adaptive optimi-
zation algorithm attempting to determine the extremum value
of an unknown nonlinear performance function in real-time.
Thereby, it reduces the optimization downtime by eliminating
the need for offline data analysis. This optimization method was
successfully applied to a wide range of engineering applications
including maximum power point tracking in renewable energy
systems [1–6], control of ABS brakes [7–9], combustion engine
timing control [10,11], mobile robots path planing [12–15] and so
on. A descriptive survey on extremum seeking control and its
applications can be found in [16,17].

Due to the wide range of engineering applications, there exist a
growing interest among researchers and scientists to improve the
performance and reliability of this algorithm by providing better
tuning and calibration methods. Owing to these Scientific efforts,
there have been a number of developments in ESC algorithm
including digital implementation of sinusoidal perturbed ESC, the
use of periodic non-sinusoidal perturbation signals, the use of a
time-dependent dither signal amplitude and the development of
stochastic perturbed ESC [18,19]. In all the proposed algorithms,
the convergence speed of ESC scheme is proved to be proportional
to the second order derivative of output of unknown nonlinear
performance function with respect to its input ð €y ¼ d2y ¼ f ðθÞ

dθ2
Þ. This

dependency may result in destabilization of the system when
variations in €y is steep due to the plant condition variations [18].

To reduce this dependency, different approaches have been pro-
posed in the literature.

One of the traditional approaches is to compensate €y variations
by employing additional compensator(s) in the ESC scheme [20].
The transient response of the averaged-linearized model of this
ESC can be adjusted by adequate tuning of compensator(s). Altho-
ugh this is an effective method to eliminate the issue when €y
variations are small, since these variations are unknown, an esti-
mation approach is required to predict the €y changes ahead of the
time and tune the compensator coefficients accordingly. Nesic in
[21] has presented an ESC tuning guidelines which ensures larger
domain of attraction and faster convergence speed for extremum
seeking algorithm. It aught to be mentioned that by properly
tuning ESC parameters, the global peak can be achieved in the
presence of local extremum(s), as it is claimed in [21]. The same
issue has been investigated by Tan et al. by analyzing various
periodic perturbation signals [19]. In other works, additional loops
(i.e. Newton-based ESC) and/or complex mathematical blocks (i.e.
Lyapunov-based ESC) have been employed in order to not only
reduce the convergence speed but also enhance the performance
of the system [3,22–24,14,25–30].

In this paper, to improve the transient response of ESC, a novel
extremum-seeking scheme for the optimization of nonlinear
plants utilizing fractional order calculus is proposed. A detailed
stability analysis of this fractional order extremum seeking control
(FO-ESC) scheme is provided to guarantee the convergence of the
system to an adjustable neighborhood of the optimum. Further-
more, as will be demonstrated, special features of fractional order
operators, such as “locality” and “generalized stability criteria”
improve the most important criteria for extremum seeking
schemes: convergence speed and robustness.
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Unlike other proposed ESC schemes in the literature, neither
additional feed-back/feed-forward loops nor complex mathema-
tical calculations (e.g. matrix calculation) is required for the pro-
posed FO-ESC in order to improve the performance and con-
vergence speed of the system. This feature simplifies the imple-
mentation of FO-ESC and reduces the calculation time and
implementation cost.

In order to compare FO-ESC and IO-ESC, an averaged linearized
model of FO-ESC is derived and analyzed against the equivalent
averaged linearized model for IO-ESC. Comparing these two
models illustrates the aforementioned advantages of fractional
order operators utilization in the ESC.

The rest of the paper is organized as follows: Section 2 intro-
duces the fractional order calculus. Section 3 presents an overview
of extremum seeking algorithm. In Sections 4 and 5, the proposed
FO-ESC is introduced and the stability of its averaged model is
investigated. FO-ESC analysis and comparison with IO-ESC as well
as simulation and experimental results are presented in Section 6.
Concluding remarks are presented in Section 7.

2. Fractional order derivatives and integral definitions

The idea of fractional calculus has been known since the
development of the regular calculus, with the first reference
probably being associated with letter between Leibniz and
L'Hospital in 1695 [31].

Nowadays, two popular definitions are used for the general
fractional differintegral; Riemann–Liouville (RL) definition and
Caputo definition [32]. The RL derivative is defined as

aD
α
t f ðtÞ ¼

1
Γðn�αÞ

dn

dtn

Z t

a

f ðτÞ
ðt�τÞα�nþ1 dτ; ð1Þ

for ðn�1oαonÞ and Γð:Þ is the Gamma function. When a¼0,
sometime authors use dα

dtα
notation which is equal to 0D

α
t .

The Caputo derivative is defined as

aD
α
t f ðtÞ ¼

1
Γðn�αÞ

Z t

a

f ðτÞ
ðt�τÞα�nþ1 dτ: ð2Þ

In contrast to the RL fractional derivative, when solving dif-
ferential equations using Caputo's definition, it is not necessary to
define the fractional order initial conditions. More details regard-
ing these two definitions and their differences have been dis-
cussed in [32]. Fractional derivatives and integrals properties and
applications can be found in [33–35,31,36].

Since introduction of fractional calculus to engineering world,
the modeling of physical phenomena using fractional order
operators and fractional order controllers have been widely
investigated among researchers and scientist in this field. All
previous researches on the application of fractional order opera-
tors in the engineering field imply the superiority of the fractional
order operators compared to the classical integer order ones from
the view point of robustness and performance
[37,38,31,39,34,32,46,47,48].

3. Extremum seeking algorithm

In recent years, various types of ESC structures have been
introduced and investigated in the literature and among different
algorithms, sinusoidal perturbed ESC structure has drown the most
interest among researchers [17]. The general form of a single input–
single output periodic perturbed extremum seeking scheme is
shown in Fig. 1. As shown in this figure, this type of ESC employs a
slow periodic perturbation, sin ðωtÞ, and adds it to the estimated

signal θ̂ . Because of the slow dynamics of the perturbation signal,
the plant appears as a static map ðy¼ f ðθÞÞ to ESC and its dynamics
does not interfere with the extremum seeking scheme [40]. If the
estimated signal, θ̂ , is on either side of the extremum point, θn, the
perturbation, a sin ðωtÞ, creates a periodic response of y which is
either in phase or out of phase with a sin ðωtÞ. The high-pass filter
eliminates the “DC component” of y. Thus perturbation signal,
a sin ðωtÞ, and output signals are two approximately sinusoidal
waveformwhich are in phase if θ̂oθn or out of phase if θ̂4θn [40].

Fig. 2 illustrates the ESC operation for a nonlinear static plant
,ðy¼ f ðθÞÞ as described above. In this figure, the output of ESC
algorithm has been depicted when the operating point is larger,
equal or smaller than extremum point. Since product of two in
phase signals gives a signal with a positive mean and this product
results a negative mean for two out of phase signal, this feature can
be used to find the operating point using a gradient detector [41].

The mathematical model for ESC scheme (Fig. 1) can be written
as

y¼ f ðθÞ
_̂
θ ¼ kζ
_ζ ¼ �ωlζþωlðy�ηÞa sin ðωtÞ
_η ¼ �ωhηþωhy

:

8>>>>><
>>>>>:

ð3Þ

To obtain the optimal performance of ESC loop, perturbation
frequency, ω, amplitude, a, gradient update law gain, k, and filter
cut-off frequencies, ωh and ωl, must be calibrated adequately.
Some general rules have been listed in the literature as ESC design
rules [25,42]. To ensure that the plant dynamics will not be cap-
tured by ESC loop, the perturbation frequency must be selected
such that it is slower than the slowest plant dynamics. Therefore
plans appears as a static system to ESC. The cut-off frequencies of
high-pass and low-pass filters must be designed in coordination
with the perturbation frequency ω; ωhoω and ωloω. However,
these filters should have sufficient bandwidth (higher cut-off
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Fig. 1. Block diagram of a single input - single output periodic perturbed extremum
seeking algorithm.

Fig. 2. Extremum seeking algorithm operation for a nonlinear static plant [41].
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