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a b s t r a c t

This paper studies a nonlinear receding horizon control guidance strategy for spacecraft formation
reconfiguration on libration orbits in the Sun–Earth system. For comparison, a linear quadratic soft
terminal control strategy is also considered for the same reconfiguration missions. A novel symplectic
iterative numerical algorithm is proposed to obtain the optimal solution for the nonlinear receding
horizon control strategy at each update instant. With the aid of the quasilinearization method, a high-
efficiency structure-preserving symplectic method is introduced in the iterations, and the optimal
control problem is replaced successfully by a series of sparse symmetrical linear equations. Several
typical spacecraft formation reconfiguration missions including resizing, rotating and slewing reconfi-
gurations and their combinations are numerically simulated to show the effectiveness of the nonlinear
receding horizon guidance strategy based on the proposed symplectic algorithm. Through these simu-
lations, the nonlinear receding horizon control strategy is shown to have obvious advantages in con-
vergence and parameter sensitivity compared with a linear quadratic soft terminal control strategy.
Monte Carlo stochastic simulations are used to test the robustness of the nonlinear receding horizon
control guidance in dealing with measurement and execution errors.

& 2015 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Spacecraft formation flying on libration point orbits is essential
to meet the increasing demand for deep space exploration [1–3].
However, deep space spacecraft formation flying based on the
circular restricted three-body problem (CRTBP) dynamical model
for a deep space mission is very different from spacecraft forma-
tion flying based on the Kepler dynamical model for near Earth
missions [4–7]. The nature of the dynamical model of CRTBP does
not provide an analytical solution, so the analysis of spacecraft
formation flying is still strongly dependent on numerical methods.
Thus far, potential future applications that involve spacecraft for-
mation flying on the libration points, have attracted great interest
in formation control strategies and numerical methods.

Various strategies and approaches have been proposed for
spacecraft formation reconfiguration on libration point orbits.
Optimal nonlinear control and geometric control methods have
been derived and compared to more traditional linear quadratic

regulators as well as input state feedback linearization [8]. A finite
element method for solving optimal control has been developed
and applied to spacecraft formation reconfiguration by using lin-
earized equations about a nonlinear nominal base orbit [9]. A
recently developed technique based on generating functions has
been employed for designing spacecraft formation reconfiguration
in Hill three-body dynamics [10]. Efficient parameter optimization
algorithms for collision-free energy sub-optimal path planning for
formations of spacecraft flying in deep space are presented [11].
Based on the characterization of requirements and constraints,
different algorithms for centralized optimal formation planning
and coordination have been developed [12]. A reconfiguration
guidance algorithm based on finite dimensional parameter opti-
mization for spacecraft formation is presented [13]. The above-
mentioned studies on spacecraft formation reconfiguration near
libration points mainly focus on path planning, especially avoiding
collisions, reducing energy or fuel costs, minimizing reconfigura-
tion time and balancing energy. However, the collinear libration
point orbits are inherently unstable. Furthermore, any perturba-
tions in real environments will move rapidly the spacecraft off the
collinear libration point orbits. Therefore, it is meaningful to
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investigate a suitable guidance strategy for compensating for these
disturbances.

Guidance methods such as reference trajectory guidance [14–16]
and predictive guidance [17,18] can be used to correct deviations
and compensate for disturbances. The reference trajectory guidance
method is used to track a reference trajectory and is implemented
with an online closed-loop feedback control [19]. The predictive
guidance method can handle large dispersions and accommodate
severe off-nominal conditions. With the rapid growth of digital
computers, receding horizon control (RHC) has become a powerful
tool for spacecraft predictive guidance missions [20,21]. The
essential characteristics of RHC is that the optimal control problem
is solved over a shorter and moving horizon. The successful appli-
cations of RHC guidance are due to its reducing of sensitivity from
disturbances and parameter variations [22]. When using RHC gui-
dance, the optimal control problem is solved over a shorter moving
horizon. However, the online computational burden associated with
solving the moving optimal control problem is an impediment to
practical real-time applications.

The development of efficient numerical algorithms for the RHC
problem is an active area of research, and many numerical
methods have been proposed. Based on Simpson-trapezoid
approximations for the integral and Euler-type approximations
for the derivatives, reference [23] transformed the linear RHC
problem into a quadratic programming problem. The indirect
Jacobi pseudospectral method [24] expanded the state and costate
variables into polynomials with the values of the states and cost-
ates at different discretization points as the expansion coefficients,
reducing linear RHC problems into systems of algebraic equations.
The main drawbacks of pseudospectral methods for a large state-
space model with a large discretization of unknown variables is
that the linear equation obtained is large and dense with an
asymmetrical coefficient matrix, which increases computer
memory storage needs and reduces on-line implementation effi-
ciency. An efficient sparse symplectic numerical approach for
solving the linear RHC problem is proposed [25]. To solve the
nonlinear RHC problem, a fast numerical algorithm based on the
generalized minimum residual (GMRES) method combined with
the continuation method has been proposed [26].

Motivated by the requirements of a guidance strategy for
spacecraft formation reconfiguration and a high-performance
numerical algorithm for solving the nonlinear RHC problem, an
efficient symplectic numerical algorithm based on continuous
finite low-thrust for solving nonlinear RHC guidance of spacecraft
formation reconfiguration on a given libration point orbit in the
Sun–Earth system will be investigated in this paper. The con-
tributions of this paper include the following two points: (1) an
efficient and easily implemented numerical algorithm that com-
bines quasilinearization techniques and symplectic preserving has
been developed to solve the nonlinear RHC guidance strategy;
(2) the features and behaviors of the presented nonlinear RHC
guidance strategy for spacecraft formation reconfiguration,
including the convergence of the symplectic algorithm and its
parameter sensitivity, have been studied in detail.

2. Mathematical modeling for spacecraft formation reconfi-
guration on libration point orbits

2.1. Circular restricted three-body problem

In this paper, spacecraft formation reconfiguration missions on
libration point orbits are modeled using the equations of motion of
the circular restricted three-body problem (CRTBP). The reference
coordinate frame O;X;Y ; Zð Þ, which is centered on the barycenter,
rotates at the same rate as the orbital motion of the two massive

bodies. The X axis extends from the barycenter through Earth, the
Z axis extends in the direction of the angular momentum of the
system, and the Y axis completes the right-handed coordinate
frame. The equations that describe the motion of the spacecraft
without control can be written in the dimensionless form [27,28]

€X�2 _Y ¼ ∂U
∂X;

€Yþ2 _X ¼ ∂U
∂Y ;

€Z ¼ ∂U
∂Z ;

8>><
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where U ¼ 1
2 X2þY2
� �

þ1�μ
r1

þ μ
r2
þ1

2μ 1�μ
� �

.
The dot in Eq. (1) represents the time derivative in the rotating

frame. μ is the mass-ratio parameter used to nondimensionalize the

system. r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþμ
� �2þY2þZ2

q
and r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� 1�μ

� �� �2þY2þZ2
q

are equal to the distances from the spacecraft to the Sun and Earth,
respectively.

2.2. Relative dynamical model

Because this paper mainly discusses the problem of spacecraft
formation reconfiguration around the L2 libration point of the
Sun–Earth system, it would be convenient to transfer the reference
frame from the barycenter of the Sun–Earth system to the L2 point.
The relationship between the O;X;Y ; Zð Þ reference frame and the
new L2; x; y; zð Þ reference frame is as follows:

x¼ X�1þμ�γ
� �

γ
; y¼ Y

γ
; z¼ Z

γ
ð2Þ

In Eq. (2), the distance between the Earth and L2 is denoted by
γ, and it is taken as the new unit of length for convenience. The
motion equations of virtual spacecraft on libration point orbits
without control can then be transferred from Eq. (1) to the fol-
lowing equation

€xo�2_yo�xo ¼ � 1�μð Þ xo þ1þ1=γð Þ
γ3d31o

�μ xo þ1ð Þ
γ3d32o

þ1�μþγ
γ

€yoþ2_xo�yo ¼ � 1�μð Þyo
γ3d31o

� μyo
γ3d32o

€zo ¼ � 1�μð Þzo
γ3d31o

� μzo
γ3d32o

8>>>>>><
>>>>>>:

ð3Þ

where xo, yo and zo denote the position coordinates of the virtual
spacecraft on libration point orbits in the L2; x; y; zð Þ reference frame,

d1o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xoþ1þ1=γ
� �2þy2oþz2o

q
, and d2o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xoþ1ð Þ2þy2oþz2o

q
.

Meanwhile, in the new L2; x; y; zð Þ reference frame, the dyna-
mical equation of the ith real spacecraft under the active control
can be written as follows:

€xi�2_yi�xi ¼ � 1�μð Þ xi þ1þ1=γð Þ
γ3d31i

�μ xi þ1ð Þ
γ3d32i

þ1�μþ γ
γ þuix

€yiþ2_xi�yi ¼ � 1�μð Þyi
γ3d31i

� μyi
γ3d32i

þuiy

€zi ¼ � 1�μð Þzi
γ3d31i

� μzi
γ3d32i

þuiz

8>>>>>><
>>>>>>:

ð4Þ

where xi, yi and zi denote the position coordinates of the ith real
spacecraft in the L2; x; y; zð Þ reference frame, uix, uiy and uiz are the
control inputs of the ith real controlled spacecraft in the x,

y and z directions, d1i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiþ1þ1=γ
� �2þy2i þz2i

q
, and d2i ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xiþ1ð Þ2þy2i þz2i

q
.

By subtracting Eq. (3) from Eq. (4), the nonlinear relative
dynamical equation of the ith real spacecraft under the active
control with respective to the virtual spacecraft without control on
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