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This work reveals the applicability of a relatively new optimization technique, Leapfrogging, for both
nonlinear regression modeling and a methodology for nonlinear model-predictive control. Both are
relatively simple, yet effective. The application on a nonlinear, pilot-scale, shell-and-tube heat exchanger
reveals practicability of the techniques.
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1. Introduction

Model Predictive Control is well established and accepted
within the process industries [1]. Further, it has been demon-
strated that nonlinear models provide control advantages when
the process is nonlinear, and when the model-based controller
appropriately compensates for changes in process gain and
dynamics that arise with changes in operating conditions [2-5].
Such studies reveal that once tuned, controllers with nonlinear
models remain tuned throughout the entire operating range.
Further, they indicate that the modeling environment (neural
network, fuzzy logic, gain scheduling linear models, first-princi-
ples, etc.) is irrelevant to the control benefits. Although modeling
approach is irrelevant to control, the choice of a first-principles
nonlinear model preserves process knowledge; and, once devel-
oped for control, the nonlinear models provide additional benefits
in optimization, constraint forecasting, design, and diagnosis. This
work continues the investigation and demonstration record
toward the practicability of using first-principles modeling for
model predictive control.
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The literature also indicates that computational issues asso-
ciated with the horizon-predictive optimizer limit the application
of nonlinear models, especially when implemented in standard
control devices [6]. Accordingly, MPC models are usually linear,
and often solved with optimizers that seek on-constraint (exterior)
solutions. By contrast, this work reveals that Leapfrogging as a
nonlinear, constraint-handling, global optimization technique is
efficient enough to be implemented in conventional devices; and
can find an interior optimum. This application provides a credible
implementation in pilot-scale equipment, and a methodology that
can guide others to implement nonlinear, horizon-predictive,
constraint-handling control using an engineer’s process models.

This work uses the ISA nomenclature for MV and CV. The
manipulated variable (MV) is the output of the controller, the
signal to the process. The controlled variable (CV) is the process
variable desired to be kept at a set point (SP). In model predictive
control (MPC) the controller employs an optimizer to find the
sequence of present and future MV actions that best shape the
model-predicted (time-forecast) CV trend.

1.1. Leapfrogging

Leapfrogging is a recently developed population-based direct-
search optimization technique based on a set of heuristic rules [7-9].
This optimization technique is initiated by computing the objective
function (OF) value at random spots within the feasible decision vari-
able (DV) space. The random points are called the players (alternate
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conventions might refer to trial solutions as particles or individuals).
The worst player (when seeking a minimum, the worst has the highest
OF value) leaps over the best player (with the lowest OF value) to a
random location within the reflection of the DV hyper-volume con-
necting the worst and the best player. The leap-over might determine a
new best, or might not. The process of leaping worst over best con-
tinues until all the players converge at a point, the optimal solution.

Leapfrogging has been revealed as having distinct advantages
over several other optimization techniques, and also has been
demonstrated on several applications [7,10-12]. In order to
establish credibility and applicability of the Leapfrogging optimi-
zation technique to an advanced process control environment, this
work focuses on demonstrating its application in implementing
nonlinear regression modeling and nonlinear model predictive
control (NMPC) on a pilot-scale heat exchanger (HX).

1.2. Nonlinear regression modeling

Developing a dynamic model of the process is a first step for
the implementation of MPC. The model is regarded as the proxy
for the process, and is used to forecast the future behavior of the
process. In this application the process is nonlinear, and the model
will be developed from first-principles. However, exact values of
the model coefficients cannot be known a priori, so nonlinear
regression will be used to adjust nonlinear model coefficient
values to make the dynamic model best match process response.

Nonlinear regression is an optimization that seeks to make the
model best match the process. In this case the optimizer decision
variables (DVs) are the model coefficient values, and the objective
is to minimize the sum of squared deviations between model and
actual:

min

{P1,P2.P3.P4} Z(CVp,i—Cvai)z 1)

where CV represents the process controlled variable, the sub-
scripts m and p indicate model and process, i is the data index, and
p1-p4 represent the model coefficients.

1.3. Model predictive control

Model predictive control (MPC), alternately termed horizon
predictive control or advanced process control was independently
developed by several groups in the 1970s and is associated with
several landmark publications [13,14]. Since then, many variations
have arisen in the search for a full-featured, simple, robust con-
troller. The objective of MPC chosen for this work is to predict the
sequence of future control actions (MV moves) that should be
implemented to make the process reach the set point, along a
desired path, avoiding constraints. The desired path is often
termed the reference trajectory. At each sampling, MPC chooses a
set of possible future MV values and uses a dynamic model of the
process to forecast the CV values over a future time horizon. It
iteratively improves (optimizes) the MV sequence to find the set
that best leads the CV in the proximity of the reference trajectory,
avoiding constraints. Once an MV sequence has been optimized,
only the first step is implemented. At the next sampling, the entire
procedure is reevaluated.

In optimization the set of MV moves is termed the trial solution
(TS), and an individual MV would be a decision variable (DV). The
“cost” to be minimized (deviations from the model-forecast CV
from the reference trajectory, and penalties for state variable
violations) is termed the objective function (OF).

Since the model is not exactly the same as the process, there is
a process model mismatch (pmm) (often termed the residual)
between the process response and the model values. In this MPC

application the pmm is used to bias the set point of the process to
provide a biased SP for the model. The reference trajectory is a
transient path from the current modeled value to the biased set
point. The controller aims at moving the model towards the biased
SP, which in turn means that the process will be moved towards
the SP.

Basically, the objective function for the optimization technique
is represented in Eq. (2).

min H )

(MVy. MV,. MVs) ; (re—=CVimy) 2

The optimizer seeks to minimize the sum of squared deviations
between the reference trajectory and model forecast across a
future horizon. Here the subscript t represents the integer count
for future time intervals. In this work at every sampling time, the
optimizer computes three future MV moves, the decision variables
that would make the process move towards the SP, after which,
only the first MV value is implemented. As will be developed, the
OF will include penalties for constraint violations.

2. Methodology
2.1. Experimental

A heat exchanger (HX) network in the Unit Operations
Laboratory (UOL) at Oklahoma State University is used for this
study. The HX is a 4-pass shell-and-tube HX of 1 meter long and
0.2 m diameter. It is one of the five heat exchanger units in a pilot
scale network shown in Fig. 1.

For this study, the shell-side fluid is steam which condenses,
transferring heat to the tube-side fluid water. The outlet water
temperature is considered as the CV for this study and the con-
troller signal to the steam valve is considered as the MV. The CV is
measured in a thermowell about one meter downstream of the HX
tube fluid exit. Piping is either 3/4 or 1 in. in diameter. Orifice flow
meters and thermocouple transducers transmit 4-20 mA signals
to a National Instruments Compact Field Point data acquisition and
control system (DACS). The controller is implemented in LabView,
compiled in a standard personal computer, downloaded to the
DACS for local execution, which eventually sends signals to devices
that operate the air-actuated modified-equal-percentage flow
control valves.

2.2. HX modeling

A first-principles process model is first developed. Assuming
that there are no ambient loses, a simple steady state energy

Fig. 1. HX Network.
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