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This paper studies the approach of model predictive control (MPC) for the non-linear systems under
networked environment where both data quantization and packet loss may occur. The non-linear
controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model.
The sensed data and control signal are quantized in both links and described as sector bound
uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the
communication networks and may suffer from the effect of packet losses, which are modeled as
Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system
is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate
the effectiveness of the proposed method.
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1. Introduction

Networked control systems (NCSs) are a type of closed-loop
systems, in which the control loops are closed through commu-
nication networks [1]. NCSs have been found applications in a broad
range of fields, such as mobile sensor networks, remote surgery,
automated highway systems and urban water resource manage-
ment system [2-4]. The main features of NCSs are reducing
connection, simple implement resource sharing, and ease of main-
tenance. However, since the communication bandwidth is limited, a
number of undesirable phenomena may occur in NCSs, such as time
delays, packet losses and data quantizations. These phenomena
might be potential sources of poor control performance, even cause
instability of control system.

Many scholars did lots of researches on the stability analysis and
controller design of linear NCSs, and many achievements have been
made, see, e.g. [5-11]. Ref. [5] investigates the stabilization problem
of linear NCS with packet losses in both the sensor to controller and
controller to actuator links, where bounded packet loss process and
Markovian packet loss process are considered. Ref. 6] considers the
case that the communication delays exist in both the system state
and the mode signal. By modeling the delays as Markov chain, a
Markovian jump linear system with two jumping parameters is
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introduced to describe the linear closed-loop systems, and a
necessary and sufficient condition on the existence of stabilizing
controllers is provided. By considering both the network-induced
delay and time delay in the plant, a new model of linear NCS is
presented in [7], and a controller is designed by applying the delay-
dependent approach. Ref. [8] considers the stabilization problem for
the linear continuous-time NCS with packet loss and transmission
delays in both the sensor to controller and controller to actuator
links. In [9], output-feedback controller design in linear NCSs with
data quantization and packet dropout is studied in the sensor to
controller links. Ref. [10] addresses the optimal stabilization pro-
blem for linear NCSs with time delays and packet losses in both the
sensor to controller and controller to actuator links, and the stability
conditions are derived in terms of linear matrix inequalities (LMI).
Ref. [11] studies the stability problem of linear NCSs with random
time delays and packet losses which are modeled by two indepen-
dent Markov chains. Sufficient condition of the stochastic stability is
obtained by Lyapunov method, and the output feedback controller
is designed based on obtained stability condition. Ref. [12] provides
a unifying modeling framework that incorporates quantization
effects, packet dropouts, time-varying transmission intervals, time
varying transmission delays and communication constraints, and
studies the stability problem. Ref. [13] considers the stability
analysis of NCS that are subject to time varying transmission
intervals, time-varying transmission delays, packet losses and com-
munication constraints. The transmission intervals and transmis-
sion delays are described by continuous random variables, result is
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derived in terms of linear matrix inequalities. Ref. [ 14] investigates
the stability of NCSs which suffer from time-varying transmission
delays, time-varying transmission intervals, and communication
constraints, and a modeling framework based on discrete-time
switched linear uncertain systems be presented. Ref. [15] presents
a general framework of non-linear NCS that incorporates varying
delays, varying sampling intervals and communication constraints,
and a continuum of Lyapunov functions guarantee stability of the
NCS that will derive bounds on the maximally allowable transmis-
sion interval and the maximally allowable delay. Refs. [16-18]
studied event-triggered controllers for discrete-time linear systems.
More results can be found in [19,21,20,22], and reference therein.
Undoubtedly, these papers have achieved very nice results, but they
did not take the model predictive control (MPC) into consideration,
which is a popular technique for the control of industrial process.

Model predictive control commonly refers to a class of computer
control algorithms that use an explicit process model to forecast the
future response of a plant [23]. Its control sequence is obtained by
solving an optimization problem that minimizes the objective
function at each sampling instant. Since the MPC has the ability
to handling the input and output constraints in a systematic
manner, it is widely applied in industrial field. Hence, it is necessary
and interesting to extend the MPC approach to the NCSs area. There
have been a lot of nice results in this field, see, e.g. [24-29,25,30]. In
[24], a constrained MPC algorithm to overcome packet loss in
sensor to controller link of NCS is proposed, and a buffer is designed
to storage control sequence computed by MPC algorithm. Based on
the standpoint of robust control, [25] presents the synthesis
approach of MPC for NCS with bounded packet losses, and [26]
investigates the synthesis approach of MPC for NCS with both
effects of data quantization and bounded packet loss. The synthesis
approaches of MPC for NCS subject to data quantizations in both
links is considered in [27], and the stability results which satisfy the
input and state constraints are provided by applying the Lyapunov
method. A finite switching horizon MPC for NCSs with less than one
sampling state transmission delay is discussed in [28], the control
strategy is characterized as a constrained optimization problem
over the quadratic objective function at each sampling instant. Ref.
[29] provides a data-driven predictive controller for NCS with
random network-induced delay, which consists of control predic-
tion generator and network-induced delay compensator. Based on a
new quadratic performance criterion, [30] addresses a moving-
horizon scheduling strategy to handle the communication schedul-
ing for NCS with communication constraints, and a moving-horizon
state estimator is also provided.

The above-mentioned papers only consider the linear controlled
plant, few attention has been paid on the non-linear plant. Since the
industrial process becomes more complex and non-linear charac-
teristics of the controlled object becomes more prominent, it is of
great practical significance to study the non-linear system under
the networked environment. The related results can be found in
[31-33]. By describing the non-linear plant as Tagaki-Sugeno (T-S)
fuzzy model, the tracking control for non-linear NCSs is investigated
in [31]. Ref. [32] also takes a T-S fuzzy model to describe the NCSs
with Markov delays, and the fault detection problem is studied. In
[33], the compensation problem for non-linear NCSs with delays is
concerned. Both state feedback and output feedback fuzzy delay
compensation controllers are designed, and a new approach is
proposed to analyze the stability of closed-loop system.

Unfortunately, to the best of the authors' knowledge, much less
scholars have studied the MPC approach of non-linear NCSs,
especially for non-linear NCSs with both packet loss and data
quantizations in double-sided links, which stimulates our research.
This paper aims to design a fuzzy model predictive controller for
non-linear system under networked environment with both packet
losses and data quantizations. The packet losses are modeled by

Bernoulli processes, the data quantizations are described as sector
bound uncertainty, and the overall closed-loop system is estab-
lished as T-S fuzzy model by considering both the effects of packet
loss and data quantization. Then, the stability result for the obtained
closed-loop system is provided by applying the Lyapunov method,
and fuzzy model predictive controller is presented based on LMI
technique.

Notations: R" denotes the n dimensional Euclidean space. For
any vector x and matrix Q, IIx Ilé =xTQx. X > 0 (X < 0) means that X
is a symmetric positive definite (negative definite). The superscript
T denotes the transpose of matrices. The star x denotes blocks that
are readily inferred by symmetry. The E means mathematical
expectation.

2. The model of NCS

The structure of NCSs in this paper is shown in Fig. 1, where the
plant is a discrete-time non-linear system. x(k) e R" is the state
vector; si(k)e R" is the output of the quantizer g; w(k) e R" and
v(k)ye R™ are input and output of the controller, respectively.
so(k) e R™ is the output of the quantizer f; u(k) e R™ is the input
vector.

Assuming, in the sensor to controller link, that a single packet
of the data set x(k) is sent at each k, which is subject to
quantization and possibility of packet loss. In the controller to
actuator link, a single packet of the data set v(k) is sent at each k,
which is also subject to quantization and possibility of packet loss.

2.1. T-S fuzzy model

We consider the following non-linear plant:

x(k+1) = h(x(k),uk)), k=0 1)

where h(-) is a non-linear function. T-S fuzzy model is based on
using a set of fuzzy rules to describe a global non-linear system in
terms of a set of local linear models which are smoothly connected
by fuzzy membership functions. Generally, we can set up the
follow IF-THEN rule to describe T-S fuzzy model:

Plant rule i : IF 81 (k) is M',, and, ..., 0, (k) is Mi,
Then x(k+ 1) = Ajx(k) + Bju(k) 2)

where 0;(k),0,(k), ...,0x(k) are the premise variables; M (i=
1,2,...,r,1=1,2,...,n) is the fuzzy set; r is the number of fuzzy
rules; A;e ™" and B;e ™™ are some constant matrices of
compatible dimensions. By using a fuzzy inference method, which
includes a singleton fuzzifier, product fuzzy inference and center-
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Fig. 1. Networked control system structure.
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