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a b s t r a c t

Fractional order systems can be more adequate for the description of dynamical systems than integer
order models, however, how to obtain fractional order models are still actively exploring. In this paper, an
identification method for fractional order linear system was proposed. This is a method based on input–
output data in time domain. The input and output signals are represented by Haar wavelet, and then
fractional order systems described by fractional order differential equations are transformed into frac-
tional order integral equations. Taking use of the Haar wavelet operational matrix of the fractional order
integration, the fractional order linear system can easily be converted into a system of algebraic equation.
Finally, the parameters of the fractional order system are determined by minimizing the errors between
the output of the real system and that of the identified system. Numerical simulations, involving integral
and fractional order systems, confirm the efficiency of the above methodology.

& 2015 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

A fractional order system (FOS) is a system that is modeled
by a fractional differential equation containing derivatives of non-
integer order. Recently, considerable attention has been paid to the
FOS. The reason for this is because a growing number of physical
systems can be compactly described using FOS, such as the semi-
infinite lossy (RC) transmission line [1,2], diffusion of heat into
semi-infinite solid [2], viscoelastic materials [3,4], electrochemical
processes [5], dynamics of porous media [6], continuous time
random walk [7]. In addition, theoretical and experimental results
have been shown that the fractional order controller had better
dynamic responses and more robustness to model uncertainties in
comparison with the classical controllers [8].

However, because the geometric and physical interpretation of
fractional calculus is not as distinct as integer calculus, it is difficult
to model real systems as FOS directly based on mechanism ana-
lysis. Therefore, system identification is a practical way to model a
FOS. For integral order system (IOS), once the maximum order of
the system to be identified is determined, the parameters of the
model can be optimized directly. However, for a FOS, because
identification requires the choice of the number of fractional order

operators, the fractional order of the operators, and finally the
coefficients of the operators, the identification process of a FOS is
more complex than that of an IOS [9]. Most classical identification
methods cannot directly applied to identification of a FOS.

Existing identification of a FOS can be mainly divided into two
categories: time-domain system identification and frequency-
domain system identification. In time domain [10–12], the para-
meters of a system to be identified are determined by minimizing
the error between the output of the actual system and that of the
identified system. For instance, Poinot and Trigeassou [13,14] have
used fractional models to identify thermal systems, Sabatier et al.
used the identified fractional order model to estimate the crank-
ability of lead-acid batteries [15]. Compared to integer order sys-
tem, the most obvious difference lies in identification of the frac-
tional order of the operators. Therefore nonlinear optimization
method has adopted to identify the order of a FOS [16,17]. More-
over, some intelligent algorithm were also applied for identi-
fication of FOS, such as genetic algorithms [18,19], differential
evolution algorithm [20], particle swarm optimization [21,22]. In
frequency domain, Li et al. [23] used the least squares method
to investigate the frequency response identification technique.
Nazarian et al. [24] developed an identification method of FOS
according to input output frequency contents. Hartley et al. [9]
discussed an identification method for FOS using continuous
order-distributions. Besides above mentioned methods, recently, a
refined instrumental variable method for continuous-time systems
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was extended to identify FOS [25], subspace method was proposed
to identify a continuous-time FOS. In the proposed method, the
parameter matrices were identified using the subspace-based
technique and the commensurate orders were determined by
using nonlinear programming [26], fractional Laguerre basis was
proposed to identify FOS [27]. So, how to identify the FOS is still an
open problem.

Operational matrix has been widely used to deal with FOS. The
main characteristic behind the approach is that it converts these
problems to those of solving a system of algebraic equation thus
greatly simplifying the problem. Typical examples are the block-
pulse functions [12,28], the Jacobi operational matrix of fractional
integration [29–31], Legendre polynomials [32–34], Chebyshev
polynomials [35,36] and Haar wavelets [37,38].

Main aim of this paper is to use the Haar wavelet operational
matrix to identify the FOS. The input and output signals are
represented by Haar wavelets, and then the FOS described by
fractional order differential equations are converted into fractional
order integral equations. Taking use of the Haar wavelet opera-
tional matrix of the fractional order integration, the FOS can easily
be converted into a system of algebraic equation. The parameters
of the FOS are determined by minimizing the error between the
output of the real system and that of the identified system.

The organization of this paper is as follows: in Section 2, the
fractional calculus, FOS and problem statement is introduced. In
Section 3, the identification method based on Haar wavelet
operational matrix is proposed. And verification of the method is
provided in Section 4. Finally, conclusions are made in Section 5.

2. Fractional order system

2.1. The definition of fractional calculus

There are several definitions for the general fractional differ-
entiation and integration, such as the Grünwald–Letnikov defini-
tion, the Riemann–Liouville definition and Caputo definition [39].
Here the Riemann–Liouville fractional integral and Caputo frac-
tional derivative were given as following, which will be used in
this paper.

The Riemann–Liouville fractional integration of order 0α > is
defined as
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where Γ is the Gamma function, H t( ) is a Heaviside function.
When the Riemann–Liouville derivative was used to model

real-world phenomena, initial conditions with fractional order
derivative are difficult to obtain. So we introduce a modified
fractional differential operator Dα proposed by Caputo,
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where n n1 α− < < and n is an integer.
The relation between the Riemann–Liouville integral and

Caputo derivative is given by the following expressions:
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where n n1 α− < < and n is an integer.

2.2. Fractional order systems

A fractional order system (FOS) is a system that is modeled by a
fractional differential equation containing derivatives of non-

integer order. A single input single output (SISO) linear time
invariant (LTI) system may be described by the following fractional
order differential equation:
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Under the zero initial conditions, applying the Laplace trans-
form to Eq. (4) the input–output representation of the FOS can be
written in the form of a transfer function:
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where iα and jβ are arbitrary real positive, f t( ) and y t( ) are the
input and output of the system, respectively.

3. Identification method based on the Haar wavelet operational
matrix

3.1 Haar wavelet
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An arbitrary signal x t L b0,2( ) ∈ [ ] can be expanded by Haar
wavelet, i.e.,
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In practice, only the first N terms of Eq. (6) are considered,
where N is a power of 2. So we have
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where the superscript T indicates transposition, the Haar coeffi-
cient vector CN and the Haar function vector H tN ( ) are defined as
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The N-square Haar matrix N NΨ × can be defined by
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3.2. Block pulse operational matrix of the fractional order integral

N-term Block pulse functions are defined as following
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