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a b s t r a c t

This paper investigates the problem of finite-time stabilization by output feedback for a class of non-
holonomic systems in chained formwith uncertainties. Comparing with the existing relevant literature, a
distinguishing feature of the systems under investigation is that the x-subsystem is a feedforward-like
rather than feedback-like system. This renders the existing control methods inapplicable to the control
problems of the systems. A constructive design procedure for output feedback control is given. The
designed controller renders that the states of closed-loop system are regulated to zero in a finite time.
Two simulation examples are provided to illustrate the effectiveness of the proposed approach.

& 2015 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the past decades, the control of nonholonomic systems
has received significant amount of interests from researchers
worldwide because they can model many frequently met
mechanical systems, such as mobile robots, car-like vehicle and
under-actuated satellites. However, due to the limitation
imposed by Brockett's necessary condition [1], this class of
nonlinear systems cannot be stabilized by stationary con-
tinuous state feedback. To overcome this difficulty, with the
effort of many researchers a number of intelligent approaches
have been proposed, which can mainly be classified into dis-
continuous time-invariant stabilization [2,3], smooth time-
varying stabilization [4–6] and hybrid stabilization [7,8], see
the survey paper [9] and references therein for more details.
Mainly thanks to these valid approaches, the robust issue of
nonholonomic systems has been well-studied and a number of
interesting results have been established over the last years,
for example, one can see [10–20] and the references therein.

As is well-known, stability is one of the most important
research topics since it is the precondition for the system to

work normally [21–23]. There is a special kind of stability,
finite-time stability, that is, the solution of an asymptotically
stable system reaches the equilibrium point in finite time.
Compared with the commonly used notion of asymptotic sta-
bility, the finite-time stable systems have many nice features
such as faster convergence rates, higher accuracies and better
disturbance rejection properties [24]. As a consequence, the
finite-time stability and stabilization have attracted increasing
attention over the last years [25–30]. Particularly, by using
state feedback, the authors in [31] addressed the finite-time
stabilization of nonholonomic systems with weak drifts. The
works [32–35] further extended the results in [31] to the
nonholonomic systems with uncertain parameters and per-
turbed terms. It should be noted that all above papers are
concerned with the systems in feedback-like form (i,e., the x-
subsystem of considered systems is a feedback-like system),
and thus these methods are not applicable to nonholonomic
systems in feedforward-like form. Questions naturally arise: is
it possible to finite-time stabilize nonholonomic systems in
feedforward-like form? If possible, under what conditions can we
design such controllers and how? To our best knowledge, in the
literature there have not been results which provide answers
to these questions.
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Motivated by the above discussion and the example pre-
sented in Section 2.1, this paper focuses on solving the finite-
time stabilization problem for a class of nonholonomic feed-
forward systems using output feedback. The contributions are
highlighted as follows: (i) the output feedback stabilization
problem of the nonholonomic systems, x-subsystem of which
is feedforward-like form, is studied for the first time. (ii) A
sufficient condition on characterizing the nonlinear growth of
the nonholonomic feedforward systems for its finite-time sta-
bilization is derived. (iii) Based on a novel switching strategy to
overcome the obstacle that the discontinuous change of coor-
dinates is inapplicable to the finite-time output feedback
control of nonholonomic systems, and by skillfully using the
homogeneous domination approach, a systematic output
feedback control design procedure is proposed to render the
states of closed-loop system to zero in a finite time. (iv) An
application example for hopping robot is modeled and solved
by the proposed method.

Notations: Throughout this paper, the following notations
are adopted. Rþ denotes the set of all nonnegative real numbers
and Rn denotes the real n-dimensional space. For a given vector
X, XT denotes its transpose, and jX j denotes its Euclidean norm.
Ci denotes the set of all functions with continuous ith partial
derivatives. K denotes the set of all functions: Rþ-Rþ , which
are continuous, strictly increasing and vanishing at zero; K1
denotes the set of all functions which are of class K and
unbounded. Besides, the arguments of the functions will be
omitted or simplified, whenever no confusion can arise from
the context. For instance, we sometimes denote a function f ðxð
tÞÞ by simply f(x), f ð�Þ or f.

2. Motivating example and problem formulation

2.1. Motivating example

Consider a kinematic hopping robot, as shown in Fig. 1. As
cited in [4], this robot consists of a body with an actuated leg
that can rotate and extend; the constraint on the system is
conservation of the angular momentum. Let ðψ ; l;θÞ be the
angle, leg extension, and leg angle of the robot. For the sake of
simplicity we take the body mass equal to one and concentrate
the mass m of the leg at the foot. The upper leg length is also
taken equal to one and l represents the extension of the leg.
The angular momentum of the robot is given by

_θþmðlþ1Þ2ð _θþ _ψ Þ ¼ 0 ð1Þ

Since we the leg angle and extension can be controlled directly,
we choose their velocities as our inputs. Thus, the kinematics of

the robot can be expressed as

_ψ ¼ u0

_θ ¼ � mðlþ1Þ2
1þmðlþ1Þ2

u0
_l ¼ u1 ð2Þ

Note that the second equation is a consequence of con-
servation of angular momentum. We expand the equation using
a Taylor series about l¼0 and obtain

_θ ¼ � m
1þm

_ψ � 2m
ð1þmÞ2

lu0� f ðlÞu0 ð3Þ

For system (2), by taking the following state transformation:

x0 ¼ψ ; x1 ¼ �θ� m
1þm

ψ ; x2 ¼ l ð4Þ

we obtain

_x0 ¼ u0

_x1 ¼
2m

ð1þmÞ2
x2u0þ f ðx2Þu0

_x2 ¼ u1 ð5Þ
It is evident that the x-subsystem of system (5) has a

feedforward-like rather than feedback-like structure, that is,
system (5) is a nonholonomic system in feedforward-like form
(nonholonomic feedforward system). Due to the special
structure, it is easily verified that the existing finite-time
control methods are inapplicable to the system (5). Therefore,
an interesting problem is how to design a finite-time stabilizer
for the system (5) and more general nonholonomic feedfor-
ward systems. In this paper, we will focus our attention on
solving this problem.

2.2. Problem statement and preliminaries

In this paper, we consider the finite-time output feedback
stabilization for the following class of nonholonomic systems in
feedforward-like form:

_x0 ¼ d0u0þϕ0ðt; x0Þ
_x1 ¼ d1x2u0þϕ1ðt; x2;…; xn;u0;u1Þ
_x2 ¼ d2x3u0þϕ2ðt; x3;…; xn;u0;u1Þ
⋮
_xn�1 ¼ dn�1xnu0þϕn�1ðt; xn;u0;u1Þ
_xn ¼ dnu1

y¼ ðx0; x1ÞT ð6Þ
where ðx0; xÞT ¼ ðx0; x1;…; xnÞT ARnþ1, u¼ ðu0;u1ÞT AR2, yAR2 are
the system state, control input and system output, respectively;
di's are disturbed virtual control coefficients; and ϕi's denote the
input and states driven uncertainties, which are called as the
nonlinear drifts of the system (6).

Remark 2.1. Although great progress on nonlinear feedfor-
ward systems has been made [36,38–40], for nonholonomic
feedforward system (6), how to construct a finite-time stabi-
lizer via output feedback is still very difficult problem. The
crucial obstacle mainly comes from two aspects. One is that
time-varying coefficient diu0 makes the x-subsystem
uncontrollable in the case of u0 ¼ 0. The other one is that, the
discontinuous change of coordinates, as a common method for
control design of nonholonomic systems, is inapplicable to the
finite-time output feedback control of nonholonomic systems.
Therefore, how to overcome these obstacles and design a

l

Fig. 1. A simple hopping robot.
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