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In this paper, a novel method is developed for delay-dependent finite-time boundedness of a class of
Markovian switching neural networks with time-varying delays. New sufficient condition for stochastic
boundness of Markovian jumping neural networks is presented and proved by an newly augmented
stochastic Lyapunov-Krasovskii functional and novel activation function conditions, the state trajectory
remains in a bounded region of the state space over a given finite-time interval. Finally, a numerical
example is given to illustrate the efficiency and less conservative of the proposed method.
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1. Introduction

During the past few decades, delayed neural networks are found
successfully applied in the signal processing, image processing and
pattern recognition problems [1-4]. However, these successful appli-
cations are major relay on the dynamic behaviors of delayed neural
networks and some of these applications dependent on the stability
of the equilibria of neural networks [5-7], and a large number of
results on this topic has been investigated in the literature [8-10].
Among the recent advance in this area, delay-fraction method [11],
free-weighting matrix technique [12], convex analysis approach [13]
are the major effective ones. Up to now, the issue of stability for
neural networks with delays has received an increasing attention.

On the other hand, stochastic systems have received much
more attention since the stochastic modeling comes to play an
major role in many real applications. It should be noted that, in
most of the relevant literature, Markovian jump systems is an
important class of stochastic systems. Recently, the Markovian
process or Markovian chain can determines the switching among
the different neural networks modes in [14,15]. Therefore, it is of
great value both practically and theoretically to study of Marko-
vian jump neural networks subject to time delay, and many
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relevant results has also been reported in the literature [16,17]. It
should be pointed out that the neural networks with Markovian
switching are always based on the Lyapunov method. On the other
hand, it is very difficult to construct an appropriate Lyapunov
functional, the stability criterion of many neural networks subject
to Markovian switching obtained is often too conservative.

Nowadays, most of the existing literature are mostly concerned
with the Lyapunov asymptotic stability, which is defined over an
infinite-time interval. However, in practice, one is always inter-
ested in a bound of system trajectories over a fixed short time
instead of Lyapunov asymptotic stability over an infinite-time
interval, such as networked control systems [18,19]. Recently,
some early results relating to finite-time stability can be found
in [20-25]. In [23], the problem of finite-time H,, control for
continuous-time Markovian jump systems has been investigated
through the new Lyapunov functions. In [24], the issue of finite-
time H,, control for discrete-time Markovian jump systems sub-
ject to average dwell time switching has been considered. In [25],
by introducing a newly augmented Lyapunov-Krasovskii func-
tional and considering the relationship between time-varying
delays and their upper delay bounds, the problem of finite-time
filtering for switched linear systems with a mode-dependent
average dwell time. With a new integral inequality, the finite-
time H,, control for a class of nonlinear system with time-varying
delay, which can be represented by the Takagi-Sugeno fuzzy
system in [26].
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To the best of authors' knowledge, the issue of delay-dependent
finite-time boundedness about neural networks with time-varying
delays and Markovian switching has not been fully tackled except
for [20]. It should be mentioned that, in [20], there still exists some
conservative when discuss the stability criteria of neural networks.
There still exists room for further improvement due to the fact that
some useful terms are ignored in the stochastic Lyapunov-Kra-
sovskii functional in [20]. It is natural to look for an alternative
view to reduce the conservatism of stability criteria. This motivates
our research on this topic.

In this paper, the issue for delay-dependent finite-time bound-
edness of neural networks with time-varying delays and
Markovian switching is investigated. In order to solve the term
like fttfr(Z(s),QZ(s)) ds, a new processing way is proposed in
Lemma 2.3. Making full use of nonlinear parameters and time-
varying delays, less conservative stability condition for finite-time
boundedness is derived. At last, a numerical example is given to
illustrate the efficiency and less conservative of the proposed
method.

Notations: Throughout of paper, letting P > O(P > 0,P <0,P < 0)
denote a symmetric positive definite matrix P (positive-semi
definite, negative definite and negative-semi definite). For any
symmetric matrix P, Amax(P) and Anin(P) respectively denotes the
corresponding maximum and minimum eigenvalues of matrix P.
R™ denotes the n-dimensional Euclidean space and R™*™ repre-
sents the set of all n x m real matrices. The shorthand col{Z;,
Z, ...,Zyn} denotes a column matrix with the matrices Z1,Z,, ..., Z,.
The identity matrix of order n is denoted as I,,. * represents the
elements below the main diagonal of a symmetric matrix. The
superscripts T and —1 represents for matrix transposition and
matrix inverse, respectively.

2. Preliminaries

Given a probability space (£2, F, P) where £2, F and P respectively
represents the sample space, the algebra of events and the
probability measure. In this paper, we consider the following
n-neuron Markovian jumping neural network over the space
(£2,F, P) described by

X() = —ArX(O)+Br f(x(£) + Cr f(X(E — 71 (D) +] 1

x(t)=¢(t), te[—7,0). M
where x(t) = [x1(t), X2(t), ..., xo(t)] T represents the neural state vector
of the system, f(x(t)) = [f1(x1(£)), f2(x2(D)), ... fn(xn(t))] T denotes the
nonlinear activation function with the given initial condition f(0) = 0;
A;, =diagf{ay(r¢), ax(ry), ..., an(ry)} describes the rate with every neu-
ron will reset its potential to the resting state in isolation; B, =
[bij(r)]n,n and Cr, =[cji(re)],., are respectively denotes the connec-
tion weight matrix and the delayed connection weight matrix;
J=U1.J2,-.-.Ju] " represents a constant external input vector. zy,(t)
is the time-varying delay which satisfies

0 <7z (t) <7, )

hOr[ < frr(t) < hMrp (3)

where 7., ho,, and hy,, are constant scalars, and 7= max, {7},
ho = miny, {hor, }, hy = maxy, {Anr, ).

There exists a parameter 1>y >0 such that 7,(t) can be
expressed as a convex combinations of the vertices

Tr.(t) = yhor, + (1= hyy,. “

Remark 2.1. It should be noted that if the stability condition is
dependent on 7.(t), it only needs to check the vertex values of
7. (t) instead of all values of 7, (t). This technique is employed to

reduce the conservatism of stability criteria for Markovian jump
systems with time-varying delays.

Letting the random form process {r:,t > 0} being the Markov
stochastic process and taking values on a finite set V' ={1,2,...,N}
with transition rate matrix = {z;}, i,jeN, namely for r. =1,
rty+1=Jj, one has

]T,'jh +o(h)
1+mih+o(h)

. . if j#i
Pr(r[+h:_’|rt:l):{ lf_]:l
where h > 0, limy,_q(o(h)/h)=0 and 7; >0 (i,je N,j #1i) denotes
switching rate from mode i to mode j. Yie N, i = —3; _ 1 7j.
Setting N contains N in the mode of system (1) and for
re =1e N, the system matrices of the ith mode are always denoted
by A;, B; and G;, all the matrices are considered to be known with
appropriate dimensions.

Assumption 2.1. The neuron state-based nonlinear function
f(x(t)) in system (1) is bounded and satisfies
. (1) —fs(
ys st C.;I) fs g2)
S1—%2
for all ¢y, ¢, € R, with y; and y;- are known real constants with
s=1,2,...,n.

<yi Gi#6, s=12...n (5)

Remark 2.2. It is seen from Assumption 2.1 that ;- and y;* can be
allowed to be negative, positive, or zero. As mentioned in [10],
Assumption 2.1 describes the monotone nondecreasing activation
when y;~ =0 and y;* > 0. Moreover, monotone increasing activa-
tion functions can be described when 0 <y;~ <y;t.

Remark 2.3. The lower bound of activation function was settled to
zero in [1,7] and the stability criteria obtained in [1,7] is
conservatism. However, the activation function in (5) is more
general.

Noting that with the Brouwers fixed-point technique, it can be
easily proved that Markovian jump systems (1) has one equili-
brium point. Assuming that x* = [x%,x%,...,x%] " is the equilibrium
point of (1) and using the transformation z(-) = x(-) — x*, system (1)
can be converted as follows:

2(t) = —Arz(t)+Br.g(@(t) + Cr.g(2(t — 7, (1)), 6)
where z(t) = [z1(£), Z3(), ..., Za(D)] ', &(2()) = [81(Z1 (X(1)), &2 (X (D)), ...,

gx®)]"  and  gi(zi(zi()) =fiz()+xH)—fix), i=1,2,...n
According to Assumption 1, one can obtain that
yo <SEVTES) (i p0)—0, i=1,2,....n )

€162

It should be pointed out that, for given 0 <@ <1, in order to
improve the stability condition of feasible region, the term
0<7,(t)<7, is always divided into 0<7,(t)<o(r,/2) and
o(tr,/2) <7, (t) < 7r. On the other hand, the activation functions
in (6) is also satisfied the condition (7). Similar to the above
division, the bounding of activation function (7) can be divided as
follows:

- _8i€)—g&i(s)
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S1—62
where 6= (y; +7;7)/2.

Instead of using the delay-partitioning approach, this technique
mainly improves the feasible region of stability criterion. In this
paper, the terms (¢;,¢>) in (8) and (9) are replaced by terms (z(t),
Z(t — k77, (b)), (2(t — KT (1)), 2(t — 7)) and (z(t —7,,(t)),z(t — 7)) at each
subintervals. Furthermore, the cross terms among the states z(t),

2(t = Kr, (1)), 2(t =T (D), 2(t =7, f(2(1)), f(2(t —KkTr (1)), f(2(t— 77, (1))
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