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a b s t r a c t

In this paper the robust pole assignment problem using combined velocity and acceleration feedback for
second-order linear systems with singular mass matrix is illustrated. This is promising for better
applicability in several practical applications where the acceleration signals are easier to obtain than the
proportional ones. First, the explicit parametric expressions of both the feedback gain controller and the
eigenvector matrix are derived. The parametric solution involves manipulations only on the original
second-order model. The available degrees of freedom offered by the velocity–acceleration feedback in
selecting the associated eigenvectors are utilized to improve robustness of the closed-loop system.
Straight-forward computational algorithms are introduced to demonstrate the effectiveness of the
proposed approach. These algorithms are applicable for a dynamical system with mass matrices that can
be either singular or nonsingular. Numerical examples are provided to illustrate the application of the
proposed procedure.

& 2014 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

This work is an extension of the recently published papers
[1,2]. In these papers the dynamical system is described by matrix
second-order, time-invariant, differential equations of the form

M €xðtÞþD_xðtÞþKxðtÞ ¼ CuðtÞ;
xð0Þ ¼ x0; _xð0Þ ¼ _x0 ð1:1Þ
by velocity–acceleration feedback control

uðtÞ ¼ �Fv _xðtÞ�Fa €xðtÞ ð1:2Þ
where xðtÞAℝn is the generalized coordinate vector and uðtÞAℝr is
the vector of applied forcing. The real matrices M; D;
KAℝn�n and CAℝn�r are, respectively, the mass, damping, stiff-
ness and control matrices. Moreover, Fv; FaAℝr�n are, respec-
tively, velocity and acceleration gain matrices, which assign the
prescribed closed-loop eigenvalues and eigenvectors. However, in
[1,2] the mass matrix M is regular while in the present study the
mass matrix M is singular, rankðMÞ ¼ qon; q40. Then, the
system is called singular, generalized, or descriptor second-order
system; see [3–12]. One inherent characteristic of descriptor
second-order linear systems is their impulsive natural response
which is generated by infinite eigenvalues. In fact, impulses may

cause degradation in performance, damage components, or even
destroy the system. Therefore, eliminating the impulsive behavior
of a descriptor system via certain feedback control is an important
problem in descriptor systems theory. In this case, infinite eigen-
values require a special treatment.

By the substitution of Eq. (1.2) into Eq. (1.1), we can obtain the
closed-loop system

ðMþCFaÞ€xðtÞþðDþCFvÞ _xðtÞþKxðtÞ ¼ 0: ð1:3Þ

The effect of the closed-loop control is therefore to modify the
mass and damping parameters so that the unstable system
becomes stable. Thus, one of the advantages of the combined
velocity and acceleration feedback is permitting the treatment of
second-order systems involving singular mass matrices.

Second-order systems with singular mass matrix arise naturally in
mechanical multi-body systems and a variety of other practical
applications; see [3–12]. In 1982, the second order generalized
systems are applied to power systems by Campbell and Rose [3].
Moreover, the generalized systems were used in the analysis and
modeling of flexible beams [4]. The use of zero-mass points for
example to denote a connection between two springs or two
dampers may be the cause of singularities in the resulting models
[5]. The treatment of some forces like reaction forces or friction forces
as unknowns of the problem may also introduce singularities in the
whole model [5]. The mathematical strategies permitting the
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treatment of second order unilateral systems involving singular mass,
damping, and stiffness matrices are discussed in [6]. The explicit
equation of motion for constrained mechanical systems with singular
mass matrices has been derived in [7]. Especially in modeling
complex multibody systems, it is useful to use redundant coordi-
nates, and in such situations singular mass matrices can arise when
describing the unconstrained system [7]. In addition, when a mass
matrix M is invertible but contains very small terms such that M is
ill-conditioned, it is common practice to set these terms to zero,
rendering M singular [11]. The controllability and observability
conditions for descriptor second-order linear systems have been
analyzed in [8]. The eigenvalue assignment with minimum sensitivity
for descriptor second-order systems via proportional-derivative state
feedback is proposed [9]. The output regulation for matrix second-
order descriptor systems using output feedback measurement is
presented [10]. Moreover, a procedure for decoupling a second-
order linear system with a singular mass matrix is developed [11].
Recently, some new results on the eigenstructure assignment for the
second-order system with a singular mass matrix are developed in
[12]. The first-order descriptor systems (singular systems or general-
ized systems) have been of great interest in the specialized literature
because they have many practical applications in robotics, mechan-
ical systems, electrical circuit networks, economics and other areas;
see [13–15] and the references therein. Up to date, no results on
robust pole assignment control problem for descriptor second-order
linear systems are available in the literature using combined accel-
eration and velocity feedback, this problem is still open.

The model of second-order linear systems has found wide
applications in many engineering and scientific fields, including
control of flexible space structures, robotics control, control of
mechanical multi-body systems, earthquake engineering, vibra-
tion control in structural dynamics, electrical circuit simulation
and microelectromechanical systems (MEMS). The problem of
maintaining the stability of the second-order system using com-
bined proportional and derivative feedback has been an active area
of research; see [16–28] and the references therein. There have
been various approaches concerning robust pole assignment
[9,16–19], robust eigenstructure assignment [20], robust partial
pole assignment [21], partial pole assignment [22], pole assign-
ment [23,24], eigenstructure assignment (ESA) [25–27], and opti-
mal control [28] for second-order systems. In a previous study for
second-order systems, the measured system responses were
assumed to be displacements and velocities. However, these types
of system responses, especially for large flexible structures, are not
as easily and accurately obtainable as accelerations, which have
been commonly obtained through the use of accelerometers.
Accelerometer is a favorable sensor to measure the dynamic
structural responses from the viewpoint of measurement. Accel-
eration is often easier to measure than displacement or velocity,
particularly when the structure is stiff [29]. From measured
accelerations, it is possible to reconstruct velocities with reason-
able accuracy. Therefore, the available signals for feedback are
accelerations and velocities. One necessary condition for a control
strategy to be implementable is that it must utilize the available
measured responses to determine the control action. Recently, the
full eigenstructure assignment and the partial quadratic eigenva-
lue assignment for second-order linear systems using combined
acceleration and velocity feedback are proposed [12,30]. Moreover,
the partial eigenstructure assignment for undamped vibration
systems using combined acceleration and displacement feedback
is introduced in [31]. Consequently, the velocity and acceleration
variables can be utilized and new design techniques for controlling
such practical systems should be developed.

The derivative feedback control in first-order linear systems has been
considered by many researchers; see [32–36]. Accordingly, derivative
feedback methodology that utilizes the combined acceleration and

velocity variables has been recently attracted the attention of many
authors to all aspects of control, including robust pole assignment,
eigenstructure assignment, optimal control, and stabilization [32–36].
The researchers have recognized the importance of using derivative
feedback on diverse practical engineering fields, such as vibration
suppression in mechanical systems and flexible structures where the
accelerometer is the only sensor. Moreover, the problem of state-
derivative feedback has been investigated within the treatment of a
generalized class of first-order singular linear systems [15]. Conse-
quently, the derivative feedback control has been applied to design
numerous kinds of practical systems.

The main contribution of the present research work is to introduce
a novel procedure for robust controller design for the second-order
linear system with singular mass matrix using combined velocity and
acceleration variables. First, the explicit necessary and sufficient
conditions that ensure solvability for the proposed problem are
introduced. Second, the parametric expressions for both the feedback
gain controllers and the eigenvector matrices are presented which
describe the available degrees of freedom offered by the velocity–
acceleration feedback. Based on these parametric expressions, a
performance index is proposed to utilize the available degrees of
freedom to obtain the robust solution. So, these freedoms are utilized
to improve robustness of the closed-loop system. Consequently, the
robust pole assignment problem is considered and an effective method
that finds the robust gain controller is obtained. Two illustrative exam-
ples are given to show that our results are effective. Finally, conclusions
are made.

2. Problem formulation

For the second-order linear system (1.1), the corresponding
quadratic polynomial pencil is

PoðλÞ ¼ λ2MþλDþK ; PoðλÞAℝn�n½λ�;
whose determinant is the characteristic polynomial of system (1.1).

Definition 2.1. Given second-order system (1.1), the matrix pencil
Po(λ) is called regular if and only if det(Po(λ)) is not identically zero.
In any other case, the pencil will be called singular.

The zeroes of detðPoðλÞÞ (finite as well as infinite) are known as
the characteristic frequencies of the system and play an important
role in system stability. For descriptor second-order linear systems,
at least one eigenvalue is infinite. The characteristic frequencies of
the system can be obtained by solving

detðPoðλÞÞ ¼ α2nλ
2nþα2n�1λ

2n�1þ…þα1λþα0 ¼ 0;

where α2n ¼ detðMÞ and α0 ¼ detðKÞ. If matrix M is nonsingular
then the polynomial Po(λ) of degree 2n and all the eigenvalues of
Po(λ) are finite. Otherwise, ifM is singular then PoðλÞ is said to have
infinite eigenvalues which may be identified as the zero eigenva-
lues of the reverse or dual polynomial λ2Poð1=λÞ ¼ λ2KþλDþM.
Let nf and n1 denote the finite eigenvalues counting algebraic
multiplicities and the eigenvalue at infinity of algebraic multi-
plicity, respectively, then nf þn1 ¼ 2n. The number of finite
eigenvalues is given precisely by nf ¼ degðdetðPoðλÞÞÞ.

The objective of feedback is to eliminate the impulsive behavior
which is generated by infinite eigenvalues for a descriptor system.
The problem is to find Fv and Fa such that the eigenvalues and
eigenvectors of the associated closed-loop quadratic pencil

PcðλÞ ¼ λ2ðMþCFaÞþλðDþCFvÞþK ð2:1Þ
can be altered as required to ensure and improve the stability of
the closed-loop system. It is known that the behavior of the
closed-loop system (1.3) is governed by the eigenstructure of its
associated quadratic polynomial PcðλÞAℝn�n½λ�. The closed-loop
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