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a b s t r a c t

This paper deals with pinning synchronization problem of fractional-order complex networks with
Lipschitz-type nonlinear nodes and directed communication topology. We first reformulate the problem
as a global asymptotic stability problem by describing network evolution in terms of error dynamics.
Then, a novel frequency domain approach is developed by using Laplace transform, algebraic graph
theory and generalized Gronwall inequality. We show that pinning synchronization can be ensured if the
extended network topology contains a spanning tree and the coupling strength is large enough.
Furthermore, we provide an easily testable criterion for global pinning synchronization depending on
fractional-order, network topology, oscillator dynamics and state feedback. Numerical simulations are
provided to illustrate the effectiveness of the theoretical analysis.

& 2015 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Concurrent technological advancements have been generating
large datasets from diverse complex systems, such as biological
and chemical systems, neural networks, social species, the Internet
and the World Wide Web, just to mention a few. In the process of
characterizing the large datasets, a multidisciplinary methodology
called complex network is emerging as a powerful tool to the
study of complex systems [1–3]. Complex networks consist of
nodes (or vertices) representing network elements and links (or
edges) representing interaction pathways between the elements.
The study of complex networks has revealed many interesting and
common phenomena of different real-life networks: the small-
world property [4], the scale-free feature [5], the overlapping
community structure [6,7], the hierarchical structure [8], among
others. These features cannot be well described by the completely
random graphs and completely regular graphs, thus clearly dis-
tinguishing them from complex networks.

An active field of complex networks is the synchronization
phenomenon occurring on them, which constitutes one of the
most paradigmatic examples of emerging collective behavior in
nature and society [9]. In the past few years, much research
effort has been dedicated to unveiling the influence of interaction
topologies on the onset of network synchronization and its

stability [10–19]. However, the above important findings are
mainly focused on synchronization of complex networks by their
intrinsic topological structure (i.e., without requiring any external
controllers). Actually, for some real-world complex networks, it is
more desirable to synchronize all the nodes to a desired state (e.g.,
an equilibrium point, a periodic orbit or a chaotic orbit). In this
case, appropriate controllers should be added to drive them to
the desired state. Combining the fact that real-world networks
normally have a large number of nodes, controlling a complex
network by adding controllers to all its nodes is neither practical
nor economical. Thus, an effective method to solve this problem
is adding controllers to just a limited subset of the network nodes.
This approach is known as pinning control, which was first
proposed to control chaos in spatiotemporal systems [20–22]
and proved to be a viable strategy to tame complex networks
with different topological structures [23–31].

Despite the advances in the study of pinning synchronization,
former works are devoted entirely to integer-order complex net-
works, in which node dynamics are described by ordinary differ-
ential equations. It has been shown that integer-order complex
networks is inefficient to model real-life complex systems with
memory and hereditary properties [32–37]. In this regard,
fractional-order complex networks (FCNs), in which the node
dynamics are described by fractional differential equations, pro-
vide an excellent tool to model memory and hereditary properties
of such systems [38]. In recent years, several theoretical studies
have been carried out in attempts to explain the synchronization
of FCNs [39–46]. For example, by designing a nonlinear coupling
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scheme, we proposed a general FCN [40] whose synchronous
behavior is different from its constituent elements due to the
nondiffusive coupling. We also explored the robustness of outer
synchronization between unidirectionally coupled FCNs with
respect to uncertain system parameters [41]. The work of Wu
et al. [43] has shown that the scenario of generalized synchroniza-
tion can also be realized in a FCN with nonidentical nodes.
However, in previous FCNs, the synchronization behavior is
produced either by relying on their intrinsic topological structure
or by applying the control action to all the network elements.
Although there are few works on synchronization problem of FCNs
via pinning control [47–49], they all employ Lyapunov-based
method which is difficult to construct for fractional-order systems.
Theoretically, the pinning synchronization of FCNs with general
topological structure is more challenging than that for integer-
order complex networks. This topic still remains to be an open
problem and needs to be more deeply solved.

Motivated by the above discussions, this paper presents a
further investigation of the subject, in which we want to stabilize
the FCNs with Lipschitz-type nonlinear nodes onto some desired
homogenous stationary states of the isolated nodes by pinning a
small fraction of network units. The contribution of the paper is
twofold. First, we present a new approach to analyze the pinning
synchronization problem of FCNs by using Laplace transform,
algebraic graph theory and the generalized Gronwall inequality.
Second, an easily testable sufficient condition for global pinning
synchronization is established in terms of fractional-order, net-
work topology, oscillator dynamics, and linear feedback. We show
that the pinning synchronization in FCNs can be achieved if the
extended network topology contains a directed spanning tree and
the coupling strength is large enough.

The rest of this paper is organized as follows. In Section 2, we
review a few concepts of fractional-order derivatives and algebraic
graph theory, and formally define the pinning synchronization
problem for the FCNs. In Section 3, the global synchronization
stability via pinning control is analyzed and the main results are
presented. Numerical simulations that illustrate the effectiveness
of theoretical results are given in Section 4. Finally, in Section 5
conclusions are given based on the results obtained in this work.

Our notation throughout is standard. R, C and Zþ refer to the
sets of real numbers, complex numbers and nonnegative integers,
respectively. The n-dimensional Euclidean space and the set of
n�m real matrices are indicated with Rn and Rn�m, respectively.
diagfz1; z2;…; zmg denotes the diagonal matrix with diagonal
entries z1 to zm. J � J refers to the Euclidean norm in Rn or
corresponding induced matrix norm in Rn�n.

2. Problem formulation and preliminaries

2.1. Fractional-order derivatives

Fractional-order derivative is a generalization of the integer-
order ones. There are different definitions for fractional deriva-
tives. The frequently used definitions are the Grünwald–Letnikov,
Riemann–Liouville, and Caputo definitions [34,38]. Because the
Caputo definition is suitable to be treated by the Laplace transform
technique with clear physical interpretations, it is more preferred
in modeling practical problems. Therefore, in the rest of the paper,
we use DαgðtÞ to denote the Caputo fractional derivative of order α
of function g(t)

DαgðtÞ ¼ dαgðtÞ
dtα

¼ 1
Γðm�αÞ

Z t

0

gðmÞðτÞ
ðt�τÞαþ1�mdτ;

where m is an integer satisfying m�1oαrm and Γð�Þ is the
Gamma function ΓðzÞ ¼ R1

0 e� t tz�1 dt. This paper mainly focuses

on the synchronization problem of FCNs with fractional order
1rαo2.

As the role of the exponential function ez in the theory of
integer-order differential equations, the Mittag–Leffler function
plays a very important role in the theory of FDEs. A two-parameter
function of the Mittag–Leffler type is defined by the series
expansion

Eα;βðzÞ ¼
X1
k ¼ 0

zk

ΓðαkþβÞ;

where α40; β40; and zAC.

2.2. Model description

Consider a FCN consisting of N coupled nodes, in which each
node is an n-dimensional fractional-order differential system. The
entire FCN is described by

DαxiðtÞ ¼ f ðxiðtÞÞ�k
XN
j ¼ 1

lijxjðtÞ; i¼ 1;2;…;N; ð1Þ

where 1rαo2 is the fractional order, xiðtÞ ¼ ðxi1ðtÞ; xi2ðtÞ;
…; xinðtÞÞT ARn is the state vector of the ith node, f ð�ÞARn is a
continuous map describing the node individual dynamics, scalar
k40 is the coupling strength, and L¼ ðlijÞARN�N is the coupling
configuration matrix determining the topological structure of the
network. Its entries lij are defined as follows: if there is a link from
node j to node i, then lijo0, otherwise lij ¼ 0 (ia j); and the
diagonal elements lii of matrix L are defined by lii ¼ � PN

j ¼ 1;ja i lij,
which ensures the diffusion that

PN
j ¼ 1 lij ¼ 0.

For the FCN (1), if each node is regarded as a vertex and each
communication link is regarded as an edge, then its coupling
topology can be conveniently described by a simple graph (for more
details on graph theory, the interested readers please refer to some
textbooks [50]). Let G¼ ðV; E;WÞ be a weighted directed graph
(digraph) of order N, where V ¼ f1;…;Ng denotes the vertex set,
E ¼ feði; jÞg denotes the directed edge set by that eði; jÞAE if and only
if there exists a directed edge from vertex j to vertex i, and a
weighted adjacency matrix W ¼ ½wij�ARN�N . The element wij is
decided by the edge eði; jÞ, i.e., eði; jÞAE3wij40, other-
wise wij ¼ 0. The neighbor set of vertex i is denoted by
N i ¼ fjAV j ði; jÞAEg. The Laplacian matrix L¼ ½lij�ARN�N of the
digraph G is defined by L¼D�W, where D¼ diagfd1; d2;…; dNg
and di ¼

PN
j ¼ 1;ja i wij is the in-degree of vertex i. A directed

path from vertex j to vertex i is a sequence of edges eði; i1Þ;
eði1; i2Þ;…; eðim; jÞ with distinct nodes ik; i¼ 1;2;…;m. We say that
a digraph G has a spanning tree if there exists at least one vertex
called root which has directed paths to all the other vertices.
Obviously, the coupling configuration matrix L of the FCN (1)
denotes the Laplacian of its corresponding digraph G, and by the
way we can obtain the corresponding weighted adjacency matrixW.

The objective of this paper is to design some appropriate
controllers for the FCN (1) such that its solutions globally syn-
chronize with the solution of the uncoupled node satisfying

Dαx0ðtÞ ¼ f ðx0ðtÞÞ; ð2Þ
in the sense that limt-1 JxiðtÞ�x0ðtÞJ ¼ 0 ði¼ 1;2;…;NÞ, where
x0ðtÞ can be an equilibrium point, a periodic orbit, an aperiodic
orbit, or even a chaotic trajectory in the phase space. For this
purpose, we apply the pinning control strategy with local linear
feedback controllers to a small fraction δð0oδr1Þ of the total
nodes in the FCN (1). Suppose that nodes i1; i2;…; il in the FCN (1)
are selected to be pinned, where l¼ ⌊δNc is the smaller but nearest
integer to δN. Without loss of generality, assume that the first l
nodes are selected to be pinned. Otherwise, we can rearrange the
order of the nodes. Therefore, the pinning controlled form of the
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