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a b s t r a c t

The particle filter (PF) has been widely applied for non-linear filtering owing to its ability to carry
multiple hypotheses relaxing the linearity and Gaussian assumptions. However, PF is inconsistent over
time due to the loss of particle diversity caused mainly by the particle depletion in resampling step and
incorrect a priori knowledge of process and measurement noise. To overcome these problems, in this
paper, robust evolutionary particle filter is proposed. The proposed method can work in unknown
statistical noise and does not require a prior knowledge about the system. In addition, to increase
diversity, a resampling process is done based on the differential evolution (DE). The effectiveness of the
proposed algorithm is demonstrated through Monte Carlo simulations. The simulation results demon-
strate the effectiveness of the proposed method.

& 2015 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The state estimation problem has many applications in many
fields, including signal processing, biostatistics, economics, and
engineering. The aim of this problem is to find the actual values of
states of a dynamical system using a sequence of noisy measure-
ments [1]. The particle filter is an effective estimator for the
nonlinear filtering problem. It generalizes the traditional Kalman
filters and can be applied to nonlinear and non-Gaussian state-
space models. PF is a Monte Carlo approach for implementing
recursive Bayesian estimation [2–4]. It exploits some random
particles with associated weights to approximate the true poster-
ior density function [4,5]. The particles are evolved over time via a
combination of importance sampling and resampling step.

To improve the performance of PF, choosing the proposal dis-
tribution and the resampling scheme is important. For this purpose,
many variants of the particle filter have been reported. For example,
the auxiliary particle filter [6], the regularized particle filter [7,8], and
the bootstrap particle filter [9,10]. In [11,12], the extended Kalman
filter (EKF) Gaussian approximation is used as the proposal distribu-
tion for PF, and in [13,14], the EKF proposal is replaced by an
unscented Kalman filter (UKF) proposal, and the unscented particle
filter (UPF) is proposed. However, there are two main sources for the
inconsistency of UPF: first, the performance of UPF depends on
correct a priori knowledge of the process and measurement noise
that are unknown in real-life applications. An incorrect a priori
knowledge may seriously degrade the performance of UKF [15–17]. It

can even lead to practical divergence and inconsistency [12–14]. A
classical method for solving this problem is adaptive estimation of a
priori knowledge. Several research works have been reported in this
direction, which have attempted adaptive estimation of a priori
knowledge. In [18], an adaptive estimation of noise covariance
matrices for Kalman filter based on the correlation–innovations
method is reported. Another method for solving this problem is H-
infinity filtering [19,20]. Compared to the Kalman filter that requires
an exact and accurate system model as well as a perfect knowledge
of the noise statistics, the H-infinity filtering requires no a priori
knowledge of the noise statistics [21–23]. In particular, unlike the
Kalman filter that aims to give the minimum mean-square estimate,
the H-infinity filtering minimizes the effect of the worst possible
disturbances on the estimation errors and hence it is more robust
against model uncertainty [24,25]. However, these results are limited
to linear systems. The extended H-infinity filter (EHF) is proposed for
non-linear systems in [19–22]. However, EHF also suffers from a
number of drawbacks, namely the problem caused by derivation of
the Jacobian matrices and the linear approximations of the nonlinear
functions [13,14].To overcome the limitations of EHF, the unscented
transformation (UT) technique has been combined with H-infinity
filter because of its effectiveness in addressing non-linear state
estimation problems. The unscented transformation (UT) is an
elegant way to approximate the filtering distribution by a Gaussian
density instead of approximating the non-linear functions as EKF. It
has been shown that the UT-based estimates are accurate to the
second order of the Taylor series expansion compared to EKF and
hence perform better than that of EKF. However, one of the most
costly operations in UPF is the calculation of the square root of the
state variable covariance matrix each time. In addition, although
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H-infinity techniques have been studied in many fields such as EKF
[22–26] and UKF [27], there are few studies on H-infinity filtering in
PF [28]. Second, UPF uses the classical resampling technique to avoid
the particle degeneracy. During resampling, some particles might
end up with no children, whereas others might end up having a large
number of children.

Both limitations can seriously reduce the accuracy of UPF and
can decrease the particle diversity, which would lead to incon-
sistency [29–31]. In this paper, square root unscented H-infinity PF
with the evolutionary resampling to overcome these problems is
presented. The proposed algorithm uses the H-infinity square root
unscented Kalman filter to generate the importance density. As a
result, it can work in unknown statistical noise behavior and is
more robust. In addition, besides the merit of reducing the
computational complexity, it has other advantages such as con-
sistently increasing numerical stability and better performance
because all resulting covariance matrices are guaranteed to stay
semi-positive definite. In the proposed algorithm, the differential
evolution based resampling scheme called evolutionary resam-
pling is used. In the evolutionary resampling scheme, the particles
recombine by using an iterative process of mutation, crossover and
selection and unlike the traditional resampling schemes; there is
no duplication and elimination of particles.

The rest of the paper is organized as follows. In Section 2, the
required background is reviewed and the consistency analysis of
UPF is presented. The H-infinity square root Unscented Kalman
filter is introduced in Section 3. The square root unscented H-
infinity PF with evolutionary resampling is presented in Section 4.
In Section 5, the experimental results are compared and analyzed
with simulation results.

2. Background

2.1. Particle filter

Consider the following nonlinear discrete system:

xt ¼ f ðxt�1Þþwt

yt ¼ hðxtÞþvt ð1Þ
wherextARn,ytARm are the state vector and the measurement
vector, respectively. f ð:Þ,hð:Þ are known nonlinear function with
appropriate dimensions and wt , vt are the process noise and
measurement noise, respectively. The process noise wt and the
measurement noise vt are assumed to be mutually uncorrelated
zero mean white noise processes with covariance matrices Q and
R, respectively. It should be pointed out that the statistics of noise
processes might not be known by the user to design filtering
algorithms. The objective of filtering is to estimate the posterior
density of the state given the past measurements pðxt jy1:tÞ [2,3,10].
Generic Bayesian filtering is used to estimate the state of a
nonlinear dynamic system sequentially in time. A recursive update
of the posterior density as newmeasurement arrive is given by the
recursive Bayesian filter defined by

pðxt jy1:t�1Þ ¼
Z

pðxt jxt�1Þpðxt�1 jy1:t�1Þdxt�1

pðxt jy1:tÞ ¼
pðyt jxtÞpðxt jy1:t�1Þ

pðyt jy1:t�1Þ
ð2Þ

where the conditional density pðyt jy1:t�1Þ is as follows:

pðyt jy1:t�1Þ ¼
Z

pðyt jxtÞpðxt jy1:t�1Þdxt : ð3Þ

The difficulty in implementing the recursive Bayesian filter is
intractable integrations in estimating the posterior density, except
for a linear Gaussian system. To solve these difficulties, probability
densities in Bayesian filtering are represented by particle filtering.

The generic PF uses the Monte Carlo simulation method to
calculate the integrals. In PF, the posterior pðxt jy1:tÞ approximated
as a weighted sum of singleton probability density functions is as
follows [10]:

pðxt jy1:tÞ ¼
XN
m ¼ 1

ω½m�
t δðxt�x½m�

t Þ ð4Þ

where x½m�
t ,ω½m�

t are the position and weight of the mth particle
respectively,δð:Þ is Dirac's delta function, and N is the number of
particles. The particle filter consists of three steps: sampling,
importance weighting, and resampling.

In the sampling step, particles are sampled according to the
proposal density function qðx½m�

t jx½m�
t�1; ytÞ. The choice of the propo-

sal density is one of the most critical issues in the particle filter,
and two popular choices are the state transition,pðx½m�

t jx½m�
t�1Þ and

pðx½m�
t jx½m�

t�1; ytÞ.
In the importance weighting, the weights are updated as

follows:

ω½m�
t ¼ ω½m�

t�1
pðyt jx½m�

t Þpðx½m�
t jx½m�

t�1Þ
qðx½m�

t jx½m�
t�1; ytÞ

ð5Þ

In the resampling step, particles with low importance are
deleted and replaced with high weights particles.

2.2. Consistency analysis

In general, a state estimator is called consistent if its state
estimation errors satisfy following equations [32]:

E½xt� x̂t j t � ¼ E½et � ¼ 0 ð6Þ

Eð½xt� x̂t j t �½xt� x̂t j t �T Þ ¼ E½etetT � ¼ P̂t j t ð7Þ
where fx̂t j t ; P̂t j tg are the estimated mean and covariance of states
on time step t, respectively. In the above equations, Eq. (5) is the
unbiasedness requirement for estimates, while (6) is the covar-
iance matching requirement. Ideally, in order to measure if a filter
is consistent, one would compare its estimate with the probability
density function (PDF) obtained from an ideal Bayesian filter. This
is not practical when the true probability density function is not
available. However, if the true state xt is known, we can use the
normalized estimation error squared (NEES) to carry out the
consistency test [32]:

εt ¼ ðxt� x̂t j tÞT P̂
�1
t j t ðxt� x̂t j tÞ ð9Þ

where xt is the ground truth. Consistency is evaluated by perform-
ing multiple Monte Carlo runs and computing the average normal-
ized estimation error squared (ANEES). Given N runs, ANEES is
computed as follows:

εt ¼
1
N

XN
i ¼ 1

εit ð10Þ

Under the hypothesis that filter is consistent (called the
hypothesis H0), εt has a χ2 distributed (chi-square distributed)
and lies in the following interval:

εtA ½r1 r2� ð11Þ
where the acceptance interval ½r1 r2� is determined such that:

PfεtA ½r1 r2�jH0g ¼ 1�α ð12Þ
in which α is the confidence level. The most common choice for
confidence level is α¼ 0:05. Therefore, the algorithm is consistent
if εt belongs to ½r1 r2� with probability 95% (i.e.PfεtA ½r1 r2�g ¼
0:95).

In UPF, parametric filter (unscented Kaman filter) is used for
designing the proposal distribution. On the other hand, the
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