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a b s t r a c t

This paper proposes a new method to reduce the parameter number of models developed in the
Reproducing Kernel Hilbert Space (RKHS). In fact, this number is equal to the number of observations
used in the learning phase which is assumed to be high. The proposed method entitled Reduced Kernel
Partial Least Square (RKPLS) consists on approximating the retained latent components determined
using the Kernel Partial Least Square (KPLS) method by their closest observation vectors. The paper
proposes the design and the comparative study of the proposed RKPLS method and the Support Vector
Machines on Regression (SVR) technique. The proposed method is applied to identify a nonlinear Process
Trainer PT326 which is a physical process available in our laboratory. Moreover as a thermal process with
large time response may help record easily effective observations which contribute to model identifica-
tion. Compared to the SVR technique, the results from the proposed RKPLS method are satisfactory.

& 2015 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Recently many kernel methods developed in the RKHS space in
offline phase [4–7] or in online scenario [8,9,19] such as, online
RKPCA, Support Vector Machine (SVM), Regularization Network
(RN), Kernel Principal Component analysis (KPCA), Kernel Partial
Least Squares (KPLS) have been proposed for applications in
classification [1], diagnosis [12,22] and nonlinear regression pro-
blems [3–5]. Despite its linearity with respect to its parameters,
the RKHS model suffers from huge complexity as the number of its
parameters is related to the number of observations used in
learning phase and which can be large depending on the process
features and the hardness of its nonlinearity. The resulting model
may be useless essentially in real time control. The problem of
parameter reduction number of RKHS model is under study and
only few research works have underlined them except some works
such as [6,20]. In this paper, a new kernel method entitled
Reduced Kernel Partial Least Square (RKPLS), to reduce the RKHS
model parameters number is proposed in which only the set of
observations that approximate the retained latent components is
considered. The selected observations are used to build the
reduced RKHS model which can be very helpful to design real
time control strategies. The proposed RKPLS method has been

applied to identify a nonlinear systems, the highly nonlinear
Trainer Process PT326 [21].

The paper is organized as follows. In Section 2, the Reproducing
Kernel Hilbert Space (RKHS) is presented. Section 3 is devoted to
the modeling in RKHS. The Partial Least Square method (PLS) and
its nonlinear version (KPLS) are presented in Sections 4 and 5. In
Section 6, the new proposed Reduced KPLS method is detailed.
Section 7 validates the proposed algorithm on the above bench-
mark. Finally Section 8 concludes the paper.

2. Reproducing Kernel Hilbert Space (RKHS)

Let E�ℝn an input space, L2 Eð Þ the Hilbert space of square
integrable functions defined on E and k : E � E-ℝ is a continuous
positive definite kernel. It is proved [13,14] that there exists a
sequence of an orthonormal eigen functions ψ1; ψ2; :::;ψ l

� �
in

L2 Eð Þ and a sequence of corresponding real positive eigenvalues
σ1;σ2; :::;σlð Þ (where l can be infinite) so that:

k x; tð Þ ¼
Xl

j ¼ 1

σjψ j xð Þψ j tð Þ ; x; tAE ð1Þ

Let Fk � L2 Eð Þ be a Hilbert space associated to the kernel k and
defined by:

Fk ¼ f AL2 Eð Þ=f ¼
Xl

i ¼ 1

αiφi and
Xl

j ¼ 1

α2
j

σj
o1

8<
:

9=
; ð2Þ
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where αiAℝ, φi ¼
ffiffiffiffiffi
σi

p
ψ i i¼ 1; :::; l. The inner product of two

functions f and g in the space Fk is given by:

o f ; g4 Fk ¼ o
Xl

i ¼ 1

αiφi;
Xl

j ¼ 1

zjφj4 Fk ¼
Xl

i ¼ 1

αizi ð3Þ

The kernel k given in (1) is said to be a reproducing kernel of
the Hilbert space Fk if and only if the following conditions are
satisfied.

8xAE; k x; :ð ÞAFk
8x; tAE and 8 f AFk ; o f tð Þ; k x; tð Þ4 Fk ¼ f xð Þ

(
ð4Þ

In such a case, Fk is called Reproducing Kernel Hilbert Space
(RKHS) with kernel k and dimension l. Moreover, for any RKHS,
there exists only one positive definite kernel and vice versa [15].

Among the possible reproducing kernels, we mention the
Radial Basis Function (RBF) defined as:

k x; tð Þ ¼ exp �‖x�t‖2=2σ2� �
; 8x; tAE ð5Þ

with σ is a fixed parameter.

3. RKHS models

Let's consider a set of observations x ið Þ; y ið Þ� �
i ¼ 1;:::;M with

x ið ÞAℝn, y ið ÞAℝ are respectively the system input and output.
According to the statistical learning theory (SLT) [15] the identi-
fication problem in the RKHS Fk can be formulated as a minimiza-
tion of the regularized empirical risk [14]. Thus it consists in
finding the function f nAFk such that:

f n ¼
Xl

j ¼ 1

wn

j φj ¼min
f A Fk

1
M

XM
i ¼ 1

y ið Þ � f x ið Þ
� �� �2

þλ‖f ‖2Fk ð6Þ

where M is the number of measurement used in learning phase
and λ is a regularization parameter chosen in order to ensure a
generalization ability to the solutionf n. According to the represen-
ter theorem [14], the solution f n of the optimization problem (6) is
a linear combination of the kernel k applied to the M measure-
ments x ið Þ; i¼ 1; :::;M, as:

f n xð Þ ¼
XM
i ¼ 1

an

i k x ið Þ; x
� �

ð7Þ

The parameter number of the model is equal to the observation
number. Despite its linearity with respect to parameters, the
model (7) suffers from the large parameter number which may
disable its use. In literature some methods for reduction parameter
number have been proposed such as Support Vector Machine on
Regression (SVR) [2], Reduced Kernel Principal Component Analy-
sis [20].

To reduce significantly the parameter number of the RKHS
model, this paper propose a newmethod entitled RKPLS which is a
reduced version of the Kernel Partial Least Square (KPLS) [7]
technique based on the famous Partial Least Square (PLS) method
[7]. Before detailing the proposed method the PLS and the KPLS
methods are reminded in both next sections.

Let's define the application Φ:

Φ : E-ℝl

x↦Φ xð Þ ¼

φ1 xð Þ
:

:
:

φl xð Þ

0
BBBBBB@

1
CCCCCCA

ð8Þ

where φi are given in (2).

The Gram matrix K associated to the kernel k is an M-
dimensional matrix, so that:

Ki;j ¼ k x ið Þ; x jð Þ
� �

for i; j¼ 1; :::;M ð9Þ

The inner product of the transformed observation [14] is:

oΦ xð Þ; Φ tð Þ4 ¼ k x; tð Þx; tAE ð10Þ

4. Partial Least Square method

4.1. Principle

Let consider the observations data set x ið Þ; y ið Þ� �M
i ¼ 1, where

x ið ÞAΕ �ℝn, y ið ÞAℝ are respectively the input and output of a
linear model. It is assumed that these observations satisfy:

1
M

XM
i ¼ 1

x ið Þ ¼ 0;
1
M

XM
i ¼ 1

y ið Þ ¼ 0 and
XM
i ¼ 1

y ið Þ
� �2

¼ 1 ð11Þ

The PLS method consists on determining a set of vectors called
latent components that represent as most as possible the varia-
tions of the input and the output observations [11]. The identifica-
tion of PLS model parameters results from the resolution of the
following optimization problem:

min
wAℝn

1
2

XM
i ¼ 1

y ið Þ �wTx ið Þ
� �2

ð12Þ

where w is the coefficient vector to be identified.
The model used to describe the system is given by:

y¼
Xn
j ¼ 1

wjxj ð13Þ

where y and xj are respectively the model output and the jth
component of the ith input x ið Þ

When the dimension n of the input space is larger than the
observations number M, the solution of the problem (12) can leads
to an overfitting.

The PLS technique formulates the problem (12) into a con-
strained minimization problem so that the coefficient vector is
normed.

min
wAℝn

1
2

XM
i ¼ 1

‖x ið Þ �y ið Þw‖2

s:t
wTw¼ 1

8>>>><
>>>>:

ð14Þ

The solution of the problem (14) is called first latent compo-
nent or first latent vector that approximates the input and the
output observations [23].

The problem (14) can be limited as:

min
wAℝn

�
XM
i ¼ 1

y ið ÞwTx ið Þ

s:t

wTw¼ 1

8>>>><
>>>>:

ð15Þ

The matrix form of the problem (15) is written as following:

min
wAℝn

�YT Xwð Þ
s:t
wTw¼ 1

8>><
>>: ð16Þ
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