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a b s t r a c t

This paper proposes a novel constrained optimization problem to design a controller for plants containing relay
nonlinearity to reduce the amplitude of sustained oscillations. The controller is additionally constrained to
satisfy desirable loop specifications. The proposed formulation is validated by designing a fractional PI con-
troller for a plant with relay.
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1. Introduction

For systems containing separable nonlinearity in cascade,
designed controllers usually produce undesirable sustained peri-
odic oscillations in the plant output response due to the existence
of stable limit cycles [1]. For the analysis of such limit cycles,
Describing Function (DF) is a commonly used tool [2]. The studies
in [3–5] show also the usefulness of DF for synthesis of controllers
to satisfy the given limit cycle details. The work in [3] focuses on
designing a robust limit cycle controller for a plant with relay
nonlinearity by maintaining Nyquist plot of loop Transfer Function
(TF) orthogonal to negative inverse of DF of relay nonlinearity. This
is subsequently generalized for other nonlinearities in [4,5].

Motivated from the above works, we consider the problem of
shaping the loop involving relay nonlinearity to reduce the
amplitude of sustained oscillations. Additionally, we constrain
the loop to meet certain performance specifications. For meeting
such a stringent control requirement, we explore the potential of
Fractional-Order Controllers (FOCs).

FOCs are the controllers whose dynamics are governed by
fractional-order differential equations [6–8]. FOCs such as PIα, ½PI�α ,
PDβ , ½PD�β , PIαDβ are superclass of their integer counterparts. There-
fore, one expects them to perform better [9]. For instance, PIα has the

capacity to outperform integer-order PI controller. In the literature, the
design of FOCs for linear plants has beenwidely studied [10–16]. In the
limit cycle context, however, only a few works are seen for FOCs [17–
19]. For the design problem in the current paper, we investigate the
applicability of FOCs. The contributions of this paper are:

(i) An optimization problem is proposed to design a controller for
plants containing relay nonlinearity in order to get:
� Reduced sustained oscillation amplitudes.
� Desirable loop performance.

(ii) Demonstration using fractional PI controller design.

2. Basics of relay nonlinearity and stable limit cycles

Let us consider a plant consisting of a relay nonlinearity in
cascade with the TF G(s). The closed loop control schematics with
controller C(s) is shown in Fig. 1.

Mathematically, the relay nonlinearity in Fig. 1 is given by

y2ðtÞ ¼
M if y1ðtÞZ0
�M if y1ðtÞo0

(
ð1Þ

We concentrate on a case where the Nyquist plot of the
designed loop is assumed to intersect with negative inverse of
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DF in the complex plane only once1 as shown in Fig. 2. Fig. 2 con-
tains superposition of:

(i) �1=NðXÞ plot of relay nonlinearity. Where, NðXÞ ¼ 4M=πX is its
DF [1] and X is the peak amplitude of sinusoidal signal at the
input of nonlinearity.

(ii) Nyquist plot of loop TF LðsÞ ¼ CðsÞGðsÞ.

The arrow in the Nyquist plot indicates increasing ω direction
ðωA ½0;1ÞÞ. The arrow in �1=NðXÞ plot shows increasing X direction.
The limit cycle point ① is intersection point between Nyquist plot
and �1=NðXÞ curve.

For sustained oscillations to be produced at the output in the
presence of nonlinearity, the nature of limit cycle point must be ‘stable’.
For the relay nonlinearity case, the occurrence and stability of limit
cycles is ensured if the conditions explained below are met by the loop
TF L(s) (Refer Fig. 2).

1. Nyquist Condition for Limit Cycle Existence [1]:

� 1
NðXÞ

� �
X ¼ X0

¼ ½LðjωÞ�ω ¼ ω0
ð2Þ

where, ω0 and X0 are limit cycle frequency and amplitude at
point ①.

2. Tsypkin's Condition [20] for Stability of Limit Cycle:
For stability of limit cycle, it is essential that for the given
Nyquist curve seen in its arrow direction, the �1=NðXÞ curve in
its arrow direction crosses from right to left (refer [1,2] for
details.). For relay nonlinearity case, this leads to the following
Tsypkin's condition [20]:

d
dω

ImðLðjωÞð Þ
� �

ω ¼ ω0

40 ð3Þ

3. A novel optimization problem for controller design

Many times, the presence of nonlinearity in the control loop
shown in Fig. 1 produces undesirable sustained oscillations at the
steady state due to the presence of stable limit cycles. It is usually
desirable to design a controller which reduces the amplitude of
sustained oscillations. Also, it will be advantageous if the con-
troller can additionally meet certain loop specifications.

For the plant with relay nonlinearity, we intend the closed loop
system to meet specified gain crossover frequency, phase margin
and closed loop stability. In the following subsections, such design
aspects are discussed to subsequently propose a constrained
optimization problem.

3.1. Incorporating describing function to control transient behavior

In general, DF is used for computing amplitude and frequency
of limit cycles, which sustain at the input of the nonlinearity. In the
present subsection, we propose an additional application of DF for

controlling the ‘transient’ behavior of a closed loop system in the
presence of nonlinearity as follows:

� For the closed loop schematics shown in Fig. 1, one usually
neglects the plant nonlinearity and considers only the TF G(s)
while designing the controller C(s). This means that one
assumes the nonlinearity to behave as a unity gain during the
transient time. At a particular amplitude A of step reference, if
the signal occurring at input of nonlinearity roughly takes
shape of a sine-wave with peak amplitude P such that
NðPÞ ¼ 1, then the transient performance of the designed closed
loop control system with and without nonlinearity is ‘same’ for
such A.

Remark 1. Limit cycles are the ‘sustained’ sine-waves that occur at
the input of nonlinearity in the steady state. Whereas, we
currently focus on a few cycles of sine-wave that occurs at the
input of nonlinearity during the transient time. Therefore, P is diff-
erent from limit cycle amplitude X0.

� We extend the above concept for a general P ðNðPÞa1Þ and
design C(s) for NðPÞGðsÞ. For a particular step reference ampli-
tude A, such designed control system meets the transient
performance in the presence of plant nonlinearity. This is
because, at such amplitude the input to the nonlinearity takes
the form of sine-wave with amplitude P.

� It must be noted that the assumption of a sine-wave shaped
input during the transient time is ideal, since input to the relay
is not freely assigned. Therefore, it must be true only for a
certain sub-class of loop TFs containing relay. Determining such
a sub-class is a possible future direction to this work. Interest-
ingly, we observe that a loop containing type-1 motion control
plant and fractional PI controller satisfies such a sine-wave
assumption as will be explained later in Section 4.2.

3.2. Desired loop specifications

Based on the discussion in the previous subsection, we con-
sider the loop CðsÞNðPÞGðsÞ to meet certain performance specifica-
tions. The specifications are as presented below (refer Fig. 3):

� Gain Crossover Frequency (ωgc): jCðjωgcÞNðPÞGðjωgcÞj ¼ 1:
� Phase Margin (ϕm): ∠½CðjωgcÞNðPÞGðjωgcÞ� ¼ �πþϕm.

3.3. Proposed conditions for closed loop stability

To ensure the closed loop stability, necessary conditions need
to be evaluated. One knows that the gain margin in decibels is
GMdB ¼ 20 � log 10 1=a

� �
(refer Fig. 3). Therefore, for one requires

ao1 for positive gain margin.
It is seen from Fig. 3 that ∠½CðjωpcÞNðPÞGðjωpcÞ� ¼ �π. The relay

nonlinearity does not introduce any phase shift, which results into its
describing function N(P) being a real quantity NðPÞ ¼ 4M=πP

� �
, i.e.

∠NðPÞ ¼ 0. It is also noticed from Fig. 2 that ∠½Cðjω0ÞGðjω0Þ� ¼ �π.
Therefore, one can conclude that the limit cycle frequency ω0 and
phase crossover frequency ωpc are equal for the case of relay
nonlinearity. i.e.

ω0 ¼ ωpc ð4Þ

From Fig. 3, we have,

a¼ CðjωpcÞNðPÞGðjωpcÞ
�� ��¼NðPÞ CðjωpcÞGðjωpcÞ

�� �� ð5Þ

M
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Fig. 1. Closed loop control schematics.

1 Ref. [3] also focuses on such a specific case.
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