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a b s t r a c t

This paper investigates the stochastic stability of fuzzy Markovian jumping neural networks with mixed
delays in mean square. The mixed delays include time-varying delay and continuously distributed delay.
By using the Lyapunov functional method, Jensen integral inequality, the generalized Jensen integral
inequality, linear convex combination technique and the free-weight matrix method, several novel
sufficient conditions are derived to ensure the global asymptotic stability of the equilibrium point of the
considered networks in mean square. The proposed results, which do not require the differentiability of
the activation functions, can be easily checked via Matlab software. Finally, two numerical examples are
given to demonstrate the effectiveness and less conservativeness of our theoretical results over existing
literature.

& 2014 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that many neural networks models have been
extensively investigated and successfully applied to various areas
such as signal processing, pattern recognition, associative memory
and optimization problems [18,16,19,23,21,20,9]. In such applications,
it is of prime importance to ensure that the designed neural
networks are stable. In hardware implementation, time delays are
likely to be present due to the finite switching speed of amplifiers
and communication time. It has also been shown that the processing
of moving images requires the introduction of delay in the signal
transmitted through the networks. The time delays are usually
variable with time, which will affect the stability of designed neural
networks and may lead to some complex dynamic behaviors such as
oscillation, bifurcation, or chaos. Therefore, the study of neural
dynamics with consideration of time delays becomes extremely
important to manufacture high quality neural networks.

As well known, in mathematical modeling of real world
problems, we will encounter some other inconveniences, for
instance, the complexity and the uncertainty or vagueness. Fuzzy
theory is considered as a more suitable method for the sake of
taking vagueness into consideration. Based on traditional neural

networks, Yang et al. [14] introduced fuzzy cellular neural network
in 1996, which combines fuzzy logic with the structure of tradi-
tional neural networks and maintains local connectedness among
cells. Unlike previous neural network structures, fuzzy neural
network has fuzzy logic between its template and input and/or
output deciding the sum of product operation, which allows us to
combine the low of fuzzy systems. Fuzzy neural network is a
useful paradigm for image processing problems and Euclidean
distance transformation. In addition, fuzzy neural network has
inherent connection to mathematical morphology, which is a
cornerstone in image processing and pattern recognition. In recent
years, various interesting results on the stability and other beha-
viors of fuzzy neural network have been reported [2,5,10].

Markovian jump systems introduced in [6] are the hybrid
systems with two components in the state. The first one refers to
the mode which is described by a continuous-time finite-state
Markovian process, and the second one refers to the state which
is represented by a system of differential equations. And many
researchers have made a lot of progress in Markovian jump control
theory [2,7,3,22,24]. In [7], Li et al. established robust stability
conditions of nonlinear delayed Hopfield neural networks with
Markovian jumping parameters by the Takagi–Sugeno fuzzy model.
However, to the best of our knowledge, up to today there is only one
paper (see [5]) reported on the stochastic stability for fuzzy neural
networks with Markovian jumping parameters. In [5], Han et al.
proposed several LMI-based global exponential stability criteria in
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the mean square for a class of fuzzy cellular neural networks with
time-varying delays and Markovian jumping parameters. But the
stability of fuzzy Markovian jumping neural networks with con-
tinuously distributed delay has not been addressed in the previous
literatures.

Motivated by the above discussion, in this paper our purpose is to
present some new stochastic stability criteria for a class of fuzzy
Markovian jumping neural networks with mixed delays in mean
square. By using Jensen integral inequality, the generalized Jensen
integral inequality [8], linear convex combination, linear matrix
inequality (LMI) technique and the improved approximation method
[13], several novel sufficient conditions are derived to ensure the
global asymptotic stability of the equilibrium point of the considered
networks in mean square. The proposed results, which do not require
the differentiability of the activation functions, can be easily checked
via Matlab LMI Toolbox. Finally, two numerical examples are given to
demonstrate the effectiveness and less conservativeness of our
theoretical results over existing literature.

Notation: Throughout this paper, let Zþ denote the set of positive
integers, WT and W �1 denote the transpose and the inverse of a
square matrix W, respectively. W40ðo0Þ denotes a positive (nega-
tive) definite symmetric matrix, I denotes the identity matrix with
compatible dimension, 0m�n denotes the m�n zero matrix, the
symbol “n” denotes a block that is readily inferred by symmetry. The
shorthand colfM1;M2;…;Mkg denotes a column matrix with the
matrices M1;M2;…;Mk. diagf�g stands for a diagonal or block-
diagonal matrix, N¼ f1;2;…;ng. For τ40; Cð½�τ;0�;RnÞ denotes
the family of continuous functions ϕfrom ½�τ;0� to Rn with the
norm JϕJ ¼ sup�τr sr0jϕðsÞj. Moreover, let ðΩ; F;PÞ be a complete
probability space with a filtration fFtgtZ0 satisfying the usual condi-
tions and Ef�g representing the mathematical expectation. Denote
by CpF0 ð½�τ;0�;RnÞ the family of all bounded, F0�measurable,
Cð½�τ;0�;RnÞ�valued random variables ξ¼ fξðsÞ : �τrsr0g such
that sup� τr sr0EjξðsÞjpo1. J � J stands for the Euclidean norm;
matrices, if not explicitly stated, are assumed to have compatible
dimensions.

2. Problem description and preliminaries

Fuzzy recurrent neural network model with Markovian jump
can be described by the following model:

_xiðtÞ ¼ �diðηðtÞÞxiðtÞþ ∑
n

j ¼ 1
aijðηðtÞÞf jðxjðtÞÞ

þ ∑
n

j ¼ 1
bijðηðtÞÞf jðxjðt�τðt;ηðtÞÞÞÞ

þ ∑
n

j ¼ 1
cijϱjþχ iþ ⋀

n

j ¼ 1
αij

Z t

�1
kjðt�sÞf jðxjðsÞÞ ds

þ ⋁
n

j ¼ 1
βij

Z t

�1
kjðt�sÞf jðxjðsÞÞ dsþ ⋀

n

j ¼ 1
σijϱjþ ⋁

n

j ¼ 1
δijϱj;

xiðsÞ ¼ φiðsÞ; sA ð�1;0�; iAN;

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
ð1Þ

where αij;βij;σij and δij are elements of fuzzy feedback MIN
template, fuzzy feedback MAX template, fuzzy feed-forward MIN
template and fuzzy feed-forward MAX template, respectively.
diðηðtÞÞ is a positive scalar representing the firing rate, aijðηðtÞÞ
and bijðηðtÞÞ are elements of feedback template and cij are elements
of feed-forward template. ⋀ and ⋁ denote the fuzzy AND and
fuzzy OR operations, respectively. xiðtÞ;ϱj and χi denote state, input
and bias of the ith neurons, respectively. fηðtÞ; tZ0g is a homo-
geneous, finite-state Markovian process with right continuous
trajectories and taking values in finite set N ¼ f1;2;…;Ng based
on given probability space ðΩ; F;PÞ and the initial model η0. Let

Π ¼ ½πij�N�N denote the transition rate matrix with transition
probability

PðηðtþδÞ ¼ jjηðtÞ ¼ iÞ ¼
πijδþoðδÞ; ia j;

1þπiiδþoðδÞ; i¼ j;

(
where δ40; limδ-0þ oðδÞ=δ¼ 0 and πij is the transition rate from
mode i to mode j satisfying πijZ0 for ia j with

πii ¼ � ∑
N

j ¼ 1;ja i
πij; i; jAN :

f ið�Þ is the activation function, τðt;ηðtÞÞ is the transmission
delay. kjðsÞZ0 is the feedback kernel and satisfiesZ 1

0
kjðsÞ ds¼ 1; jAN: ð2Þ

Function φiðsÞðiANÞ is continuous on ð�1;0�, the norm is
defined by

JφJ1 ¼max sup
�1o sr0

JφðsÞJ ; sup
�1o sr0

J _φðsÞJ
� �

:

In this paper, we make the following assumptions.
(H1) The transmission delay τðt;ηðtÞÞ is time-varying and

satisfies 0rτðt;ηðtÞÞrτðηðtÞÞrτ, _τðt;ηðtÞÞÞrτ0ðηðtÞÞo1, where
τðηðtÞÞ; τ; τ0ðηðtÞÞ are known constants.

(H2) The activation function f ðxðtÞÞ ¼ ðf 1ðx1ðtÞÞ; f 2ðx2ðtÞÞ;…;

f nðxnðtÞÞÞT ARn is bounded and satisfies the following condition:

0r f jðs1Þ� f jðs2Þ
s1�s2

rλj; 8 s1; s2AR; s1as2;

where λj ðj¼ 1;2;…;nÞ are known real constants.
For simplicity, we denote Λ¼ diagfλ1; λ2;⋯;λng.
For convenience, each possible value of ηðtÞ is denoted by

mðmAN Þ in the sequel. Then we have

dim ¼ diðηðtÞÞ; aijm ¼ aijðηðtÞÞ; bijm ¼ bijðηðtÞÞ:
As well known, the Itô's formula plays important role in the

stability analysis of Markovian systems and we cite some related
results here [1]. Consider a general Markovian delay system

_zðtÞ ¼ hðt; zðtÞ; zðt�κÞ;ηðtÞÞ; ð3Þ
on tZt0 with initial value zðt0Þ ¼ z0ARn, where κ40 is time
delay, h : Rþ � Rn � Rn �N-Rn. Let C2;1ðRþ � Rn � Rn �N ;Rþ Þ
denote the family of all nonnegative functions Vðt; z; v;ηðtÞÞ on
Rþ � Rn � Rn �N which are differentiable in t and continuously
differentiable twice in z; v. Let L be the weak infinitesimal
generator of the random process fzðtÞ;ηðtÞgtZ t0 along the system
(3) (see [11,15]), i.e.

LVðt; zt ; vt ;mÞ≔ lim
δ-0þ

1
δ
½E Vðtþδ; ztþδ; vtþδ;ηðtþδÞÞ zt ; vt ;ηðtÞ ¼m

�� ��
�V ðt; zt ; vt ;ηðtÞ ¼mÞ�;

then, by the Dynkin's formula [24,17], one can get

EV ðt; zðtÞ; vðtÞ;mÞ ¼ EVðt0; zðt0Þ; vðt0Þ;mÞþE

Z t

t0
LVðs; zðsÞ; vðsÞ;mÞ ds:

In addition, we use the following lemmas:

Lemma 1 (See [12]). Let X;Y and P be real matrices of appropriate
dimensions with P40. Then for any positive scalar ε the following
matrix inequality holds:

XTYþYTXrε�1XTP�1XþεYTPY :

Lemma 2 (Jensen integral inequality, see [4]). For any constant
matrix M40, any scalars a and b with aob, and a vector function
χðtÞ : ½a;b�-R such that the integrals concerned are well defined,
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