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a b s t r a c t

For many decades, state estimation (SE) has been a critical technology for energy management systems
utilized by power system operators. Over time, it has become a mature technology that provides an
accurate representation of system state under fairly stable and well understood system operation. The
integration of variable energy resources (VERs) such as wind and solar generation, however, introduces
new fast frequency dynamics and uncertainties into the system. Furthermore, such renewable energy is
often integrated into the distribution system thus requiring real-time monitoring all the way to the
periphery of the power grid topology and not just the (central) transmission system. The conventional
solution is two fold: solve the SE problem (1) at a faster rate in accordance with the newly added VER
dynamics and (2) for the entire power grid topology including the transmission and distribution
systems. Such an approach results in exponentially growing problem sets which need to be solver at
faster rates. This work seeks to address these two simultaneous requirements and builds upon two
recent SE methods which incorporate event-triggering such that the state estimator is only called in the
case of considerable novelty in the evolution of the system state. The first method incorporates only
event-triggering while the second adds the concept of tracking. Both SE methods are demonstrated on
the standard IEEE 14-bus system and the results are observed for a specific bus for two difference
scenarios: (1) a spike in the wind power injection and (2) ramp events with higher variability. Relative to
traditional state estimation, the numerical case studies showed that the proposed methods can result in
computational time reductions of 90%. These results were supported by a theoretical discussion of the
computational complexity of three SE techniques. The work concludes that the proposed SE techniques
demonstrate practical improvements to the computational complexity of classical state estimation. In
such a way, state estimation can continue to support the necessary control actions to mitigate the
imbalances resulting from the uncertainties in renewables.

& 2014 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

State estimation is an essential method in control system
engineering where the state of the system needs to be ascertained
from potentially uncertain measurements of a partially understood
dynamic system. It has been applied to many industrial applications
including motors [1], robots [2], as well as bio- and chemical
processing [3,4]. For many decades, it has also been a critical
technology for energy management systems utilized by power
system operators [5]. Over time, it has become a mature technology
that provides an accurate representation of a system under fairly
stable and well understood system operation. Because of the geo-
graphical distribution of the power system, it's state can not be

observed directly. Instead, it must be inferred from measurements
that include active power injections, reactive power injections,
active power flow, reactive power flow, voltage magnitude and
phase angle [6]. Although, these measurements (z) may contain
errors or noise, the value of the state estimator is in its ability to give
the least square error estimate of voltage magnitudes (V) and phase
angles ðθÞ at every bus in a given power grid. This “best” estimate of
system state is essential for power system operators to formulate
appropriate downstream control actions.

In recent years, the growing demand for energy has resulted in
the expansion of the power generation portfolio to include renew-
ables such as solar and wind power. These Variable Energy
Resource (VERs) inject uncertain amounts of power at time scales
faster and generally dissimilar to that previously found in typical
load profiles due to the unpredictable weather conditions [7].
Fig. 1 shows the square root of the power spectra of real power
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output from two wind farms and one solar PV array normalized by
the peak load [8]. As shown in Fig. 2 [9], these power spectra have
significantly different spectral content than that found in the
similarly plotted load spectra [10,11]. Furthermore, our current
abilities to forecast VER power output are also significantly less
mature [12]. The resulting forecast errors are a reliability risk that
power system operators must actively manage. Fundamentally, the
dynamic nature of the power grid requires improvements in
monitoring techniques to enhance the downstream situational
awareness and decision making [13]. One high priority in that
regard are the power grid buses at which VERs are sighted.

The emergence of variable energy resources also unhinges many
of the conventional assumptions upon which the power grid was
built. Traditionally, power networks consist of (1) a meshed trans-
mission network connecting centralized generation units in a wide
area, and (2) a radial distribution network delivering power to the
final consumer. The former was viewed as more dynamic and
requiring active monitoring and control. The latter was often treated
fairly passively. This clear distinction between the transmission and
distribution networks allows the study of the two types of networks
separately and encouraged different standards and requirements for
each type of network [14]. State estimation, as a classical technology
of the transmission system, was designed to pick up bulk load var-
iations in relation to their potential impacts on large scale cen-
tralized generation units. VERs, however, do not typically have the
same technical and economic scale and are often sighted within the

distribution system. As a result, the associated uncertain and non-
dispatchable dynamics require the scope of monitoring to be ext-
ended to include the distribution system.

Extending the traditional deployment of state estimation in
transmission systems' energy management systems towards the
distribution system dramatically increases the computational load.
Fig. 3 shows a network graph of the Western Electric Grid in the
United States [15]. It shows a highly meshed transmission network
connecting the highly radial distribution network. The number of
nodes in the former is relatively small as compared to the latter.
Although SE methods might be included in Distribution Manage-
ment Systems (DMS) [16], such a strategy would result in a dra-
matic increase in the number of buses (or nodes) per unit area. The
resulting computational expense restricts the ability to sample at
higher speeds to improve monitoring [17,18].

1.1. Relevant literature

Classical State Estimation (CSE) of power systems uses a
Weighted Least Square (WLS) jacobian-based algorithm to estimate
the state vector subject to a steady-state nonlinear model of the
power system. The algorithm is performed at regular intervals to
update the state vector x¼ ½V ;θ� [5]. It has become the de facto
standard of industrial practice in the power sector. As such, it forms
the basis of comparison for the subsequent discussion. A conven-
tional CSE implementation that addresses renewable energy inte-
gration is to solve the CSE problem (1) at a faster rate in accordance
with the newly added VER dynamics (2) for the entire power grid
topology including the transmission and distribution systems. Such
a strategy, however, is unsustainable because the computational
expense restricts the ability to sample at higher speeds to improve
monitoring accuracy [17,18]. Therefore, the integration of renewable
energy into the power grid requires power system state estimation
algorithms that are less computationally intense than CSE.

In contrast, much of the literature focuses on the accuracy of
state estimation exclusively and with little attention paid to the
required computational resources [19–23].

1.2. Contribution

The contribution of this paper is two event-triggered state
estimation techniques that address the real-time monitoring needs
of power systems with integrated variable energy resources. These
specifically require a reduction of computational time despite an
increase in power system network size and increasing power varia-
bility. In [17], the concept of Event Triggered State Estimation (ETSE)
using the variability in the wind was introduced. It proposes to
perform the state estimation only when triggered by considerable

Fig. 1. Power spectra of real power output from 2 wind farms (in light grey) and a
4.6 MW Solar PV array (in Red) [8]. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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Fig. 2. Normalized power spectrum of real power load (data from Bonneville
Power Administration [9]).

Fig. 3. Network graph of the western electric grid [15].
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