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a b s t r a c t

This paper is concerned with the problem of improved delay-dependent robust stability criteria for
neutral-type recurrent neural networks (NRNNs) with time-varying delays. Combining the Lyapunov–
Krasovskii functional with linear matrix inequality (LMI) techniques and integral inequality approach
(IIA), delay-dependent robust stability conditions for RNNs with time-varying delay, expressed in terms
of quadratic forms of state and LMI, are derived. The proposed methods contain the least number of
computed variables while maintaining the effectiveness of the robust stability conditions. Both
theoretical and numerical comparisons have been provided to show the effectiveness and efficiency of
the present method. Numerical examples are included to show that the proposed method is effective
and can provide less conservative results.

& 2014 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Over the recent decades there have been extensive investigates
of neural networks (NNs) including Hopfield neural networks
(HNNs), cellular neural networks (CNNs), recurrent neural networks
(RNNs) and Cohen–Grossberg neural networks (CGNNs) [1,3–
6,8,9,11–54]. Recently, considerable attention has been devoted to
the study of artificial neural networks due to the fact that artificial
neural networks can be applied in signal processing, static image
treatment, and also can be applied to solve some image processing,
pattern recognition and optimization problems [7,29,36,37]. Some
of these applications require the uniqueness and asymptotic stabi-
lity of the equilibrium point of a designed neural network. However,
it is well known that, in the hardware implementation of recurrent
neural networks, time delays inevitably occur in the signal com-
munication among the neurons to lead to instability of the net-
works. Thus, the stability of recurrent neural networks with time
delays has received much more attention both in theory and in
practice [4,6,11–14,16,17,19,20,22,24,25,27,28,30,33–35,42,46–54].

In the past decade, most of research focus on the stability and
robust stability of recurrent neural networks with retarded-type
delay. There are a few reports on neutral-type neural networks
(NTNNs) with time delay, i.e., recurrent neural networks with
both retarded-type delay and neutral-type delays [5,6,12,19,21–
23,27,31,35,41,43,50,51]. However, in Refs. [8,27], the time-delay is

assumed to be constant, while it actually varies with respect to time
in a physical system. Furthermore, the existing stability criteria for
NTNNs with time delay rarely consider impact of neutral-type delay.
In particular, NTNNs with fast-varying neutral-type delay (i.e., the
derivative of delay is more than 1) can never be considered. These
facts motivate the present studies.

In recent year, various approaches have been proposed to
obtain stability criteria for time-delay neural networks. In Refs.
[20,38], some sufficient conditions for global stability of neural
networks have been provided, yet only constant delays are
allowed in their results. But in practice, time-delay is usually
time-varying, which can even largely change the dynamics of
system in some cases. Therefore, the stability of neural networks
with time varying delays has become more interesting than that of
networks with constant time delays. Although stability criteria for
neural networks with time-varying delay were derived in Refs.
[3,15,21,22,32,33,45], the slow-varying constraints _hðtÞo1 on
time-varying delay was imposed. Such a restriction is very con-
servative and has physical limitations. Recently, He et al. [10,11]
and Wu et al. [39,41] proposed a new method for dealing with
time-delay systems, which employs free weighting matrices to
express the relationships between the terms in the Leibniz–New-
ton formula, and all the negative terms in the derivative of the
Lyapunov functional are retained. This approach avoids the restric-
tion on the derivative of a time-varying delay. To the best of our
knowledge, the problem of delay-dependent robust stability
criteria for neutral-type recurrent neural networks (NRNNs)
with time-varying delays has not been fully studied in the
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literature and still remains open. Motivated by the above-
mentioned analysis, in this paper, by using an integral inequality
approach (IIA) and linear matrix inequality (LMI) techniques, new
delay-dependent criteria for the neutral-type recurrent neural
network with time-varying delays and parameter uncertainties
to be admissible are established.

Based on the above discussion, we discuss the neutral-type
neural networks with time varying delays. The main purpose of
this paper is to study the robust stability of the neural networks of
the uncertain neutral type with time varying delays in terms of
linear matrix inequalities (LMIs). The parameter uncertainties are
assumed to be bounded in given compact sets and appear in all
the matrices of the state-space model. The activation functions are
supposed to be bounded and globally Lipschitz continuous, which
are more general than the usual bounded monotonically increas-
ing ones such as the activation functions of the sigmoid type.
Attention is focused on the derivation of a sufficient condition
which guarantees the existence, uniqueness and global asymptotic
stability of the equilibrium point of the uncertain neutral neural
network for all admissible uncertainties. The main advantage of
the LMI based approaches is that the LMI stability conditions can
be solved numerically using MATLAB LMI toolbox, which imple-
ments the state of art interior-point algorithms. We also provide
numerical examples to demonstrate the effectiveness of the
proposed stability results.

Notations: Throughout this paper, the superscripts ‘�1’ and ‘T’
stand for the inverse and transpose of a matrix, respectively; Rn�n

denotes an n-dimensional Euclidean space; Rm�n is the set of all
m�n real matrices; P40 means that matrix P is symmetric
positive definite; for real symmetric matrices X and Y, the notation
XZY (respectively, X4Y) means that the matrix X�Y is positive
semi-definite (respectively, positive definite); I is an appropriately
dimensional identity matrix; Xij denotes the element in row i and
column j of matrix X; The notation n always denotes the sym-
metric block in one symmetric matrix. Matrices, if not explicitly
stated, are assumed to have compatible dimensions.

2. Problem formulation

Consider the following neutral-type recurrent neural network
with time-varying delays and parameter uncertainties:

_uðtÞ�ðDþΔDðtÞÞ _uðt�hÞ

¼ �ðCþΔCðtÞÞuðtÞþðAþΔAðtÞÞf ðuðtÞÞ

þðBþΔBðtÞÞf ðuðt�hðtÞÞÞþ J; ð1Þ

where uðtÞ ¼ ½u1ðtÞ; …; unðtÞ�T ARn is the state vector with the n
neurons; f ðuðtÞÞ ¼ ½f 1ðu1ðtÞÞ; …; f nðunðtÞÞ�T ARn is called an activa-
tion function indicating how the jth neuron responses to its input;
C ¼ diagðc1; …; cnÞ is a diagonal matrix with each ci40 control-
ling the rate with which the ith unit will reset its potential to the
resting state in isolation when disconnected from the network and
external inputs; A¼ ðaijÞn�n; B¼ ðbijÞn�n; and D¼ ðdijÞn�n are inter-
connection matrices representing weight coefficient of the neu-
rons; J ¼ ½J1; …; Jn�T ARn is the external bias vector,
ΔAðtÞ; ΔBðtÞ; ΔCðtÞ; and ΔDðtÞ are unknown matrices that repre-
sent the time-varying parameter uncertainties and h(t) is the time
delay of the system satisfies

0rhðtÞrh; _hðtÞrhd; ð2Þ

where h and hd are some positive constants.
In this paper, the neuron activation functions are assumed to

be bounded and satisfy the following assumption:

Assumption 1. [40]. It is assumed that each of the activation
functions f jðj¼ 1; 2; …; nÞ possess the following condition:

0r f iðς1Þ� f ðς2Þ
ς1�ς2

rki; ς1aς2AR; i¼ 1; 2; …; n; ð3Þ

where kiði¼ 1; 2; …; nÞ are known constant scalars.

We note that the existence of an equilibrium point of system
(1) is guaranteed by the fixed point theorem [29]. Now letting
un ¼ ½un

1; …; un
n�T be an equilibrium of (1), that is _unðtÞ ¼ 0;

_unðt�hÞ ¼ 0; implies from (1) that

0¼ �ðCþΔCðtÞÞunðtÞþðAþΔAðtÞÞf ðunðtÞÞþðBþΔBðtÞÞf ðunðt�hðtÞÞÞþ J;

ð4Þ
Introducing the state deviation from equilibrium

xðtÞ ¼ uðtÞ�un ð5Þ
where xðUÞ ¼ ½x1ðUÞ; …; xnðU Þ�T ; with gðxðUÞÞ ¼ ½g1ðx1ðUÞÞ; …;

gnðxnðUÞÞ�T ; and
giðxiðUÞÞ ¼ f iðxiðU Þþun

i Þ� f iðun

i Þ; gið0Þ ¼ 0; i¼ 1; 2; …; n: ð6Þ
Now subtracting (4) from (1) with some algebraic manipula-

tions using (5) and (6), it is easy to see that the dynamics of the
state deviation is governed by

_xðtÞ�ðDþΔDðtÞÞ_xðt�hÞ ¼ �ðCþΔCðtÞÞxðtÞþðAþΔAðtÞÞgðxðtÞÞ
þðBþΔBðtÞÞgðxðt�hðtÞÞÞ; ð7Þ

It is obvious that the function gjðU Þðj¼ 1; 2; …; nÞ satisfies the
following condition:

0rgiðxiÞ
xi

rki; gið0Þ ¼ 0; 8xia0; i¼ 1; 2; …; n; ð8Þ

which is equivalent to

giðxiÞðgiðxiÞ�kixiÞr0; gið0Þ ¼ 0; 8xia0; i¼ 1; 2; …; n: ð9Þ
The matrices ΔAðtÞ; ΔBðtÞ; ΔCðtÞ; and ΔDðtÞ are the uncertain-

ties of the system and have the form

ΔAðtÞ ΔBðtÞ ΔCðtÞ ΔDðtÞ� �¼MFðtÞ Na Nb Nc Nd
� �

; ð10Þ

where M; Na; Nb; Nc; and Nd are known constant real matrices
with appropriate dimensions and FðtÞ is an unknown matrix
function with Lebesgue-measurable elements bounded by

FT ðtÞFðtÞr I; 8 t; ð11Þ
where I is an appropriately dimensioned identity matrix.

The following lemmas are useful in deriving the criteria. First,
we introduce the following integral inequality approach (IIA),
which be used in the proof of ours.

Lemma 1. [26,27]. For any positive semi-definite matrices

X ¼
X11 X12 X13

n X22 X23

n n X33

2
64

3
75Z0 ð12aÞ

the following integral inequality holds:

�
Z t

t�hðtÞ
_xT ðsÞX33 _xðsÞds

r
Z t

t�hðtÞ
xT ðtÞ xT ðt�hðtÞÞ _xT ðsÞ

� �

�
X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 0

2
64

3
75

xðtÞ
xðt�hðtÞÞ

_xðsÞ

2
64

3
75ds: ð12bÞ

Secondary, the following Schur complement result, which is
essential in the proofs of Theorem 1, is introduced.
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