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a b s t r a c t

This paper presents improved robust delay-range-dependent stability analysis of an uncertain linear
time-delay system following two different existing approaches – (i) non-delay partitioning (NDP) and (ii)
delay partitioning (DP). The derived criterion (for both the approaches) proposes judicious use of integral
inequality to approximate the uncertain limits of integration arising out of the time-derivative of
Lyapunov–Krasovskii (LK) functionals to obtain less conservative results. Further, the present work
compares both the approaches in terms of relative merits as well as highlights tradeoff for achieving
higher delay bound and (or) reducing number of decision variables without losing conservatism in delay
bound results. The analysis and discussion presented in the paper are validated by considering relevant
numerical examples.

& 2015 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

One usually assumes that the future state of the dynamical
system is determined solely by the present state of the system and
is independent of the past state information, whereas the class of
system that includes past state information along with present
state for finding the future state is referred as time-delay system
(TDS) [1–4]. The ubiquitous presence of time-delay in any physical
system (e.g., chemical processes, biological processes, process
control, population dynamics and aerospace engineering) is
known to be a source of instability and performance degradation
of the system [1,5,4]. Assessment of stability in TDS involves
computing the delay bound up to which system can retain
stability, in sequel there are two ways for stability assessment
for such systems – (i) time-domain technique and (ii) frequency-
domain technique. The former technique has relative merit of ease
in controller synthesis and computational ease although it yields
conservative delay bound result, but the latter method can
compute exact delay bound but due to computational complexity
controller synthesis is difficult. The time-domain technique is
adopted in this work for stability assessment as there is still room
for increasing the delay bound. The method is based on Lyapunov's
second method referred as L–K functional approach which subse-
quently formulates the stability condition in an LMI frame work.
For a physical system it is natural to expect that the system will

lose stability at a certain finite delay value, thus the derived
stability condition contains the information of delay size in it –

such conditions are referred in the literature as delay-dependent
stability condition. Hence, vast research literature on stability
analysis for TDS is directed towards deriving delay-dependent
one because of its physical significance and can be found in [6,5]
and references therein. Continuous improvement in the delay-
dependent stability results are reported where attempts are made
to reduce the conservativeness in the estimate of delay upper
bound compared to the existing methods and can be found in [5]
and references there in. Recently in [7–10] another notion of
stability for such a system has been coined called – delay-range
dependent stability. According to this notion, the delay lower
bound is not restricted to zero but it is a small positive number
thus giving the measure of delay range (difference between upper
and lower delay values).

Delay-dependent or delay-range-dependent stability condi-
tions are derived using L–K functional approach by two popular
techniques – (i) by partitioning the delay range, which is referred
here as delay partitioning (DP) approach [11–13] and (ii) by not
partitioning the delay range, which is referred here as non-delay-
partitioning (NDP) method [14–24]. The literature shows that
partitioning a delay interval (DP approach) or adopting augmented
LK functional involves more free matrices, whereas in NDP
approach as no sub division of delay interval is carried out it
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involves a lesser number of free matrix variables compared to the
former case. The relative merit of the DP over NDP approach is that
the former method yields less conservative delay range compared
to the latter one due to the involvement of lesser decision (matrix)
variables. In this context, authors are of the view that it is
improper to compare stability or robust stability results that
follow different stability analysis techniques. In sequel, an attempt
is made in this paper to bring out a comparison between the
various results corresponding to DP or NDP methods.

Most of the literature on delay-range-dependent stability
analysis are for nominal TDS, however few stability results on
delay-range-dependent stability condition for uncertain time-
delay system exist. Further, one can find robust delay-range-
dependent or delay-dependent results following NDP methods in
[13,14,17,18,23,25] and DP method in [7,15,16]. In [17] delay-
dependent robust stability analysis of time-delay linear system
with constant delay nature has been considered, [14] adopts
robust stability analysis for such a system using augmented LK
functional approach with much higher number of free variables,
[18] considers stability problem for an uncertain system with
polytopic parametric uncertainties. These above discussed notions
of stability for time-delay system are of practical significance, like,
stability assessment of networked controlled systems (NCS)
[11,14,26], neural-network with time-delays [25,27–30], load-
frequency control problem of an interconnected power system
[31], biomedical applications [32] and many more problems from
science and engineering.

The paper is organized as follows, Section 2 presents the
problem statement along with few useful lemmas to derive the
sufficient stability condition. Main delay-range-dependent robust
stability results are presented in Section 3 using two different
approaches (DP and NDP). Two benchmark numerical examples
have been provided in Section 4 along with the results. Section 5
concludes the work.

Notations: The superscript T stands for transpose of a matrix,
Rn denote n dimensional Euclidean space. The notation ‘n’ in a
symmetric matrix denotes the symmetric terms and diagf�g stands
for block diagonal matrix. The notation Z40 (respectively ZZ0),
for ZARn means that Z is real symmetric positive definite matrix
(respectively, positive semi-definite matrix). Cð½�τ ;0�;RnÞ denotes
the space of continuous differentiable function mapping from the
interval ½�τ ;0� into Rn, and I is an identity matrix.

2. Problem statement

Consider an uncertain time-delay system described by

_xðtÞ ¼ AðtÞxðtÞþAdðtÞxðt�τðtÞÞ; ð1Þ

xðtÞ ¼ϕðtÞ; tA ½�τ2;0� ð2Þ
where xðtÞARn is the state vector, ϕðtÞACð½�τ2;0�;RnÞ is the
initial condition of the system. The time-delay τðtÞ, in (1), is a
time-varying continuous function satisfying the following condi-
tions:

0oτ1rτðtÞrτ2; τ ¼ τ2�τ1; 0r _τðtÞrμ; 8 tZ0; ð3Þ
where τ1; τ2; τ and μ are constants and indicate delay lower
bound, delay upper bound, delay range and delay-derivative upper
bound respectively. In (1), A(t) and Ad(t) are uncertain system
matrices that can be decomposed as

AðtÞ ¼ AþΔAðtÞ ð4Þ

AdðtÞ ¼ AdþΔAdðtÞ ð5Þ
whereΔAðtÞ andΔAdðtÞ are time-varyingmatrices with norm-bounded
parametric uncertain structure added to A and Ad nominal system

matrices, respectively. The uncertain matrices may be further decom-
posed by exploiting their structural description as

½ΔAðtÞ ΔAdðtÞ� ¼DFðtÞ½Ea Ed� ð6Þ
where D; Ea and Ed are known constant matrices that influence the
parameter of the nominal system matrices A and Ad and F(t) is an
uncertain matrix satisfying

FT ðtÞFðtÞr I or JFðtÞJo1: ð7Þ

Remark 1. The uncertain matrix F(t) in (6) may be eliminated
using the following lemma, such that the stability criterion is
formulated in the form of LMI.

Lemma 2.1 (Liu [19]). Given real matrices Ω¼ΩT , Ξ, Λ and
uncertain matrix F(t) of appropriate dimensions with JFðtÞJr1,
then for any scalar ϵ40, the inequality

04ΩþΞFðtÞΛþΛTFT ðtÞΞT ð8Þ
can be equivalently written as

Ω Ξ ϵΛT

ΞT �ϵI 0
ϵΛ 0 �ϵI

2
64

3
75o0 ð9Þ

Remark 2. The bounding of the integral terms arising out of L–K
functional derivative will be approximated using free matrix
approach [33] as

�
Z t�α

t�β
_xT ðθÞR _xðθÞ dθr

xðt�αÞ
xðt�βÞ

" #T
MþMT �MþNT

n �N�NT

" #(

þγ
M

in

� �
R�1 M

in

� �T) xðt�αÞ
xðt�βÞ

" #
; ð10Þ

where ‘n’ represents symmetric components, R¼ RT 40,
β4αZ0; γ ¼ β�α40 and M, N are free weighting matrices of
appropriate dimension. However, in [8], it has been shown that
use of such free weighting matrices may impose constraint on the
resulting stability criterion and obtain less conservative results by
using an integral type inequality (Jensens's inequality) of [34]
given by

�
Z t�α

t�β
_xT ðθÞR _xðθÞ dθ

rγ�1
xðt�αÞ
xðt�βÞ

" #T �R R

n �R

� � xðt�αÞ
xðt�βÞ

" #
: ð11Þ

Many attempts have been made to deduce equivalency and
conservativeness of several stability criteria based on either (10)
or (11), e.g. see [35,8]. Explicit relation between (10) and (11) can
be established following the equivalency results in [36]. In this
regard, note that, the first term in the right hand side (RHS) of (10)
may be represented as

M
N

� �
I
� I

� �T
þ I

� I

� �
M
N

� �T
: ð12Þ

Now, it is easy to see that (10) and (11) are equivalent in view of
Theorem 4.1 of [36]. Moreover, the RHS of (10) is minimum when

M¼MT ¼ �N¼ �NT ¼ �γ�1R; ð13Þ
and for such a choice (10) becomes (11).

From the above, it seems that use of (11) is always desired since
it does not involve additional free variables besides being equiva-
lent to (10). However, if γ is uncertain and required to be
approximated with its lower or upper bound then use of (10)
would be beneficial since the choice (13) cannot be met with an
approximated γ. Moreover, the RHS of (10) is affine on the
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