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a b s t r a c t

This paper investigates the consensus seeking problem of mobile sensor networks (MSNs) with random
switching topologies. The network communication topologies are composed of a set of directed graphs
(or digraph) with a spanning tree. The switching of topologies is governed by a Markov chain. The
consensus seeking problem is addressed by introducing a global topology-aware linear quadratic (LQ)
cost as the performance measure. By state transformation, the consensus problem is transformed to the
stabilization of a Markovian jump system with guaranteed cost. A sufficient condition for global mean-
square consensus is derived in the context of stochastic stability analysis of Markovian jump systems. A
computational algorithm is given to synchronously calculate both the sub-optimal consensus controller
gains and the sub-minimum upper bound of the cost. The effectiveness of the proposed design method
is illustrated by three numerical examples.

& 2015 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the past decade, wireless sensor networks have received a
great deal of research attention due to their diverse applications in
industrial automation, health monitoring, environment and cli-
mate monitoring, intruder detection, etc., [1]. In a dangerous or
hostile environment, sensors cannot be manually deployed and
fixed. It is necessary to deploy sensors mounted on mobile plat-
forms such as unmanned vehicles, mobile robots, and spacecraft or
man-made satellites. These sensors can collaborate among them-
selves to set up a sensing/actuating network, which is called a
mobile sensor network (MSN). A typical MSN consists of hundreds
or thousands of mobile sensor nodes distributed over a spatial
region. Each sensor node has some level of capability for sensing,
communication, signal processing and movement. The tendency
that MSNs operated in a distributed manner will make use of small
low power mobile devices may play revolutionary impact on many
civil and military applications in exploration and monitoring.

Due to the limitation of resource, MSNs have limited costs for
communication, computation and motion sub-capabilities. As a result,
power-aware algorithms have recently been the subjects of extensive
research [2–6] regarding various key issues such as localization,
deployment, environment estimation and coverage control, rendez-
vous and consensus. For example, energy-efficient localization

algorithms were proposed to reposition sensors in desired locations
in order to recover or enhance network coverage or to maximize the
covered area in [7,8] and [9]. In [8–10], the power-constrained
deployment and coverage control issues were addressed by modeling
energy consumption by the total traveling distance of the sensors. In
[11] and [12], the vehicle speed management and the optimization
problem of the number of agents for adequate coverage were
addressed. In [13], a new algorithm for the maximum distance which
an agent could travel by a dynamically changing energy radius was
presented to solve the distributed deployment problem. An energy
aware protocol which can prevent the agents from depleting their
energy in achieving rendezvous was proposed in [14].

Consensus seeking, which means a group of mobile sensors
achieve agreement upon a common state (i.e., position, velocity
and direction), is another interesting problem in cooperative
control of MSNs. There have been many papers studying con-
sensus problems with cost optimization. To mention a few, an
optimal consensus control method was proposed in [15] to
minimize energy cost of sensors deployed in intelligent buildings
for resource allocation. In [16], by introducing the cost functions to
weigh both the consensus regulation performance and the control
effort, an LQR consensus method was derived for multivehicle
systems with single integrator dynamics. In [17], an optimal
consensus seeking problem was studied in a network of general
linear multi-agents. In [18], a two-step sub-optimal consensus
control algorithm guaranteeing minimum energy cost for mobility
and communication sub-tasks were derived.
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However, most of the above researches assume a static com-
munication topology of MSNs. In practice, MSNs may have a
dynamic network topology caused by link failure, packet dropout
or environmental disturbances. [19] proposed a theoretical frame-
work to study the consensus problem of multi-agent systems with
switching topology. Based on nonnegative matrix theory, [20] and
[21] investigated consensus control of multi-agent systems under
dynamic topology. [22] considered a tradeoff between system
performance and control effort of multi-agent systems with
switching topologies. In some cases, due to random network
conditions or environmental factors (e.g., sea wave, the wind and
weather condition, [23]), an MSN may experience a randomly
switching communication topology. Recently, increasing research
attention has been paid to multi-agent systems with randomly
switching network topologies, especially those with Markov
switching topologies [24–27]. For example, [28] studied the almost
sure convergence to consensus for agent network with Markovian
switching topologies. By using the pth moment exponential
stability theory and M-matrix approach, [29] considered the
average consensus for the wireless sensor networks with Marko-
vian switching topology and stochastic noise. In these results, it is
required that Markov chains are ergodic, which implies that the
multi-agent systems experience switching topologies in infinite
time horizon. In other words, the systems cannot stay in a certain
topology. In many practical applications, it is however more
reasonable that systems may go though from switching topologies
to a certain fixed topology. An example can be found when the
systems pass from unsteady environment to a settled one. In fact,
the control cost of a mobile sensor network depends on the
communication and mobility behaviors of the sensors as well as
the network topology. Therefore, for MSNs with Markov switching
topologies, it is of great importance how to delicately involve the
network topology factor into the control cost in setting up a low
cost consensus control protocol. However, there are few results
available on guaranteed cost control for consensus of multi-agent
systems with Markov switching topologies.

In this paper, we aim to investigate the problem of guaranteed
cost consensus seeking of MSNs with Markov switching topolo-
gies. We consider a collection of mobile sensors whose dynamics is
described by a discrete-time state space equation. The commu-
nications topologies are assumed to be a set of directed graphs
with a spanning tree. The switching of network topology is
modeled as a Markov chain. A topology-dependent consensus
protocol without local feedback is proposed, where the subtle
structural dynamics of the switching topology is involved. A global
LQ cost function depending on the control input and the state
errors of neighboring sensors is introduced. Then, using graph
theory and model transformation, the consensus problem with
guaranteed cost is transformed to the problem of guaranteed cost
stabilization of a reduced order Markov jumping system. A
sufficient condition which guarantees global exponential consen-
sus of the MSN in the mean square sense is derived based on
stochastic Lyapunov functional method. A computational algo-
rithm by which the consensus controller gains and a minimum
upper bound of the cost can be calculated is given. The effective-
ness of the consensus control method is illustrated by three
numerical examples.

The remainder of this paper is organized as follows. Section 2
gives some preliminaries of graph theory and the problem
formulation. Section 3 contains the main results on the sufficient
condition of consensus and controller design for MSNs with
Markov switching topology. Numerical examples are given in
Section 4, which is followed by the conclusion in Section 5.

Notations: Rn denotes n dimensional Euclidean space, Rn�m

represents the family of n�m dimensional real matrices. In is
the identity matrix of dimension n. For a given vector or a matrix

X, XΤand j jX j j denotes its transpose and its Euclidean norm. ρðXÞ
means the eigenvalue of matrix X. For a square nonsingular matrix
X, X�1 denotes its inverse matrix. And diag{…} stands for a block-
diagonal matrix. For symmetric matrices P and Q, P4Q (respec-
tively, PZQ ) means that matrix P–Q is positive define (positive
semi-definite). The sign � represents matrix Kronecker product. 1
denotes a column vector whose entries equal to one. Similar
notation is adopted for 0. The symmetric elements of a symmetric
matrix are demoted by n. E(y) and Pro(y) are the mathematical
expectation and probability of stochastic variable y. Nþ stands for
non-negative integers.

2. Preliminaries and problem formulation

2.1. Preliminaries of graph theory

We use a directed graph (digraph) Gðυ; ε;ΛÞ to model the interac-
tions among sensors, where υAfυ1;⋯;υNg is the set of N nodes,
εDυ� υ is the set of edges, Λ¼ ½aij� is the adjacency matrix with its
elements associated with the edges, i.e., if υi;υj; Aε, aij40, otherwise
ðυi;υjÞ=2ε, aij¼0. In the paper we will consider graphs without self-
edge, i.e., aii ¼ 0. Each edge ðυi;υjÞAε implies that node υi can receive
information from node υj. A sequence of edges ðυi;υkÞ, ðυk;υlÞ, … ,
ðυm;υjÞ is called a directed path from node υj to node υi. A digraph is
said to have a spanning tree, if there is a root (which has only children
but no parent) such that there is a directed path from the root to any
other nodes in the graph. The set of neighbors of node υi is denoted
by Ni ¼ ðυjAυ : ðυi;υjÞAεÞ. Define the in-degree of node υi as
di ¼

PN
j ¼ 1 aij and in-degree matrix Δ¼ diagfd1;⋯dNg. The Laplacian

matrix of the directed graph G is defined as L¼Δ�Λ. Accordingly,
define the out-degree of node υi as di

o ¼ PN
j ¼ 1 aji and the out-degree

matrix Δo ¼ diagfd1o;⋯; dN
og. The graph column Laplacian matrix of

the directed graph G is defined as Lo ¼Δo�ΛT . An important property
of L is that all of its row sums are zero, thus 1 is an eigenvector of L
associated with eigenvalue zero. Zero is a simple eigenvalue of L if and
only if the directed graph has a spanning tree, and the other
eigenvalues are with positive real parts.

2.2. Markov switching topology

Consider a mobile sensor network with N identical sensors. At
every instant k, the interconnection of these sensors can be
considered as a directed graph with a spanning tree. The commu-
nication topology is switching but not fixed due to a certain
random event. Assume that the topology is switching within a
given set of graphs G θðkÞ� �

AGðkÞ, GðkÞ ¼ G1;G2;⋯;Gq
� �

, where
fθðkÞ; kANþ g is the switching signal. Here, θðkÞAS¼ f1;⋯; qgis
assumed to be a Markov chain taking values in a finite set. Its
transition probability is given as

Profθðkþ1Þ ¼ v
��θðkÞ ¼ lg ¼ πlv;

with

ProðθðkÞ ¼ lÞ ¼ πlðkÞ
wherel; vAS, πlðkÞ is the transition probability of Gl at time k with
initial probability Proðθð0Þ ¼ lÞ ¼ π0l, and πlv is the single step
transition probability from mode l to mode v, which satisfiesPq
v ¼ 1

πlv ¼ 1. The adjacency matrix ΛðθðkÞÞ and Laplacian matrix

of graph G θðkÞ� �
are defined as Λ θðkÞ� �

A Λ1;Λ2;⋯Λq
� �

and
L θðkÞ� �

A L1; L2;⋯Lq
� �

, respectively.
Denote the whole topology modal probability distribution by

matrixΠðkÞ ¼ ½π1ðkÞ;⋯;πqðkÞ�T , with initial probability distribution
Π0 ¼ ½π01;⋯;π0q�T . Let π ¼ ½πlv�q�q be the transition probability
matrix. Then we have Πðkþ1Þ ¼ πTΠðkÞ.
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