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a b s t r a c t

In this paper, a new adaptive control approach is presented for multivariate nonlinear non-Gaussian
systems with unknown models. A more general and systematic statistical measure, called ðh;ϕÞ-entropy,
is adopted here to characterize the uncertainty of the considered systems. By using the “sliding window”

technique, the non-parameter estimate of the ðh;ϕÞ-entropy is formulated. Then, the improved neuron
based controllers are developed for multivariate nonlinear non-Gaussian systems by minimizing the
entropies of the tracking errors in closed loops. The condition to guarantee the strictly decreasing
entropy of tracking error is presented. Moreover, the convergence in the mean-square sense has been
analyzed for all the weights in the neural controllers. Finally, the comparative simulation results are
presented to show that the performance of the proposed algorithm is superior to that of PID control
strategy.

& 2013 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Most practical industrial processes are inevitably subjected to
random disturbances, which make the system extremely difficult
to operate in an expected state. Research on general stochastic
systems has been one of the hot-spot fields for several decades.
Among the existed results, the noises are usually supposed to obey
Gaussian distribution and most of the control strategies have been
focused on the effective control of the mean and variance of the
stochastic systems.

Neural networks (NNs) have attracted much attention for their
potential to address a number of difficult problems in modeling,
especially for stochastic systems with unknown nonlinear
dynamics [1–7]. Some neural network based adaptive control
algorithms have been presented for stochastic systems with
Gaussian noises. In [5], the problem of robust stabilization was
investigated for strict-feedback stochastic nonlinear time-delay
systems via adaptive neural network approach. By using a NN to
model the unknown packaged functions, a novel adaptive neural
law was obtained by constructing a novel Lyapunov–Krasovskii
function and backstepping in [6]. The single neuron adaptive
control strategies were also proposed using mean squared error
criterion [8–11].

The randomness in practical systems probably obeys non-
Gaussian distribution, so the expectation and variance are no
longer sufficient to characterize the statistical property of the
stochastic systems. Thus, control methods in [5–6,8–11] may not
achieve better control performance for the stochastic systems with
non-Gaussian noises. Fortunately, stochastic distribution control
(SDC) strategy has been proposed to deal with non-Gaussian
systems since 1996, and there are some relative results
(see [12–20]).

One kind of model based stochastic distribution controller is
designed so that the shape of the probability density function
(PDF) of the system output follows a target distribution. B-spline
was used to approximate the measured output PDF, and the shape
of the system output PDF can be controlled by manipulating the
weights of the B-spline expansion (see e.g. [12–14]). Some other
neural networks were also adopted to approximate the measured
output PDF in [15–19]. A multi-layer perceptron (MLP) and a radial
basis function (RBF) neural network were, respectively, applied to
approximate the output PDFs of non-Gaussian stochastic distribu-
tion systems (SDSs) [15,16]. It is noted that the weights vector in
the above mentioned neural networks dose not have apparent
physical meaning. In addition, the size of neural networks may be
very large if the distribution area of the output is wide or the
output PDF shape is complicated.

To solve the above problems, another kind of model-based
stochastic distribution controller was developed, where the
entropy of the output (or tracking error) rather than the PDF
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shape of the system output was considered. The minimum entropy
control laws were usually investigated by using state-space model
or input–output ARMAX model [17–19]. The model parameters
and the noises were bounded stochastic distribution with known
PDFs in state space model [17]. In [18,19], the stochastic noises
were bounded with known PDF in the pseudo ARMAX model with
fixed parameters.

For some practical industrial processes with non-Gaussian
noises, it is difficult to establish models, so it is hardly possible
to use the above model-based SDC approaches for these processes.
This calls for the model free stochastic distribution control
strategy. Neural networks were used to both model and control
nonlinear non-Gaussian systems, respectively, in [20]. A neural PID
controller was proposed to control nonlinear non-Gaussian sys-
tems using minimizing error entropy criterion in [21]. In addition,
the data-driven approach to control non-Gaussian systems was
presented in [22], where an optimal control strategy was devel-
oped for semiconductor processes with non-Gaussian noise by
using the minimum error entropy criterion. The PDF of tracking
error and quadratic Renyi′s entropy were estimated directly using
the Parzen windowing technology [23]. Nevertheless, the existed
model free stochastic distribution control methods cannot cope
with multivariable nonlinear non-Gaussian systems.

It has been pointed out that ðh;ϕÞ-entropy presented in [24]
was a unification of entropy measures [25,26]. It is natural to
investigate minimum entropy control method using ðh;ϕÞ-entropy
rather than Shannon entropy or Renyi entropy. And it is known
that the single neuron has some advantages in terms of simple
algorithm and principle, easy implementation and real time
ability. Therefore, in this paper, a single-neuron adaptive control
algorithm is proposed for multivariate non-linear stochastic sys-
tems with non-Gaussian disturbances based on the minimum
ðh;ϕÞ-entropy principle.

The remainder of this paper is organized as follows. Section 2
describes the problem and presents some information about the
considered systems. In this section, the measurements of the input
and output data rather than the analytical model are given. Section
3 provides a generalized ðh;ϕÞ-entropy criterion and its stochastic
estimation using sliding window technology. The optimal control
algorithm is then obtained by training the weighting matrix under
the proposed criterion in Section 4. Section 5 gives the conver-
gence condition of the designed control algorithm. Numerical
simulation results are presented to illustrate the efficiency and
validity of the given method in Section 6. Section 7 offers some
concluding remarks on this investigation.

2. Problem formulation

It is usually difficult to formulate the mathematical model for
general dynamic processes with nonlinearities and non-Gaussianities.
Nevertheless, the measurements of the process output data and the
set point are always available. Denote the measurement of the output
and the corresponding control input as yk∈ℜ

n and uk∈ℜm, respec-
tively. Let rk∈ℜn be the set point. We assume that the tracking error
vector is bounded and denoted as ek ¼ yk�rk∈½a; b�n.

Since the random noise is non-Gaussian, the tracking error ek is
also non-Gaussian. Even if the involved randomness is Gaussian,
the nonlinearity of the system may lead a non-Gaussian tracking
error. In this case, the well-known mean-square-error (MSE)
criterion would become invalid. To overcome this problem,
minimum-error-entropy (MEE) criterion has been used to deal
with the control problems for nonlinear non-Gaussian stochastic
systems (see e.g. [22]).

As mentioned in the introduction section, the ðh;ϕÞ-entropy
[24–26], a unification of entropy measures, was used to construct

the performance index for solving optimal tracking control solu-
tion. Based on the time series data of the system outputs and
control inputs Ik ¼ fyk�1;…; y0; ;uk�1;uk�2;…;u0g, the optimal con-
troller implemented by single neurons is designed by optimizing
the performance index.

In the data-driven context, it is imperative to estimate the
ðh;ϕÞ-entropy from the time series data ek ðk¼ 1;2;…Þ. And the
convergent condition of the single neuron based controller also
needs to be judged.

3. Performance index and the estimate of ðh;ϕÞ-entropy

In this section, the following minimum entropy criterion will be
used to obtain neural control law

Jk ¼ R1H
h
ϕðekÞ þ

1
2
uT
kR2uk ð1Þ

where R1∈ℜ and R2∈ℜm�m are the weights corresponding to
entropy of the tracking error and control energy, respectively.
Hh

ϕðekÞ is the joint entropy of the n-dimensional tracking error ek,
which is defined by

Hh
ϕðekÞ ¼ h

Z 1

�1
ϕ½γek ðξÞ�dξ

� �
ð2Þ

where either ϕ : ½0;1Þ-R is concave and h : R-R is increasing, or
ϕ : ½0;1Þ-R is convex and h : R-R is decreasing. In this paper, we
shall assume that h and ϕ are differentiable up to second order
over the entire extent of ð�1;þ1Þ and ½0;1Þ, respectively.γek is
the joint PDF of the random vector ek.

Next, we will show how to estimate the performance index by
using the available information.

At instant k, (2) can be rewritten as

Hh
ϕðxÞ ¼ h

R1
�1 γek ðxÞ �

ϕ½γek ðxÞ�
γek

ðxÞ dx
� �

¼ h E
ϕ½γek ðxÞ�
γek ðxÞ

( ) !
¼ h E ψ γek ðxÞ

h in o� �
ð3Þ

where ψðzÞ ¼ ϕðzÞ=z, Eð⋅Þ is the expectation operator.
We will drop the expectation from the definition of

ðh;ϕÞ-entropy and use the most current sample of tracking error
in the PDF to obtain the following stochastic estimate for
ðh;ϕÞ-entropy:

Hh
ϕðekÞ ¼ hðEfψ ½γek ðekÞ�gÞ≈hðψ ½γek ðekÞ�Þ ð4Þ

where ek denotes the most recent sample of tracking error at
instant k. Since the joint PDF of tracking error ek is usually
unknown in practice, the “sliding window” technology shown in
Fig. 1 is employed to estimate the joint PDF of tracking error
over the most recent L samples e!ðk�LÞ:ðk�1Þ, where e!a:b ¼
fea; eaþ1;…; ebg is the samples within the sliding window whose
width is L¼ b�aþ 1. When koL, the data e!ðk�LÞ:ðk�1Þ can be

Fig. 1. Sliding window PDF estimation strategy.
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