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a b s t r a c t

In this paper, a class of neutral high-order stochastic Hopfield neural networks with Markovian jump
parameters and mixed time delays is investigated. The jumping parameters are modeled as a continuous-
time finite-state Markov chain. At first, the existence of equilibrium point for the addressed neural
networks is studied. By utilizing the Lyapunov stability theory, stochastic analysis theory and linear
matrix inequality (LMI) technique, new delay-dependent stability criteria are presented in terms of linear
matrix inequalities to guarantee the neural networks to be globally exponentially stable in the mean
square. Numerical simulations are carried out to illustrate the main results.

& 2013 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The human brain is made up of a large number of cells called
neurons and their interconnections. An artificial neural network is an
information processing system that has certain characteristics in
common with biological neural networks. Since the pioneering work
in [16,17], Hopfield type neural networks have been intensively
studied in the past three decades and have been applied to signal
and image processing, pattern recognition, fault diagnosis, optimiza-
tion problems and special problems of A/D converter design, see
[9,11,13,19,20,29,31,32,34,38,43] and references therein. However
such neural networks are shown to have limitations such as limited
capacity when used in pattern recognition problems (see, e.g., [20]).
As well, the cases of optimization problems that can be solved using
neural networks are limited. This led many investigators to use
neural networks with high order connections. High-order neural
networks allow high-order interactions between neurons, and there-
fore have stronger approximation property, faster convergence rate,
greater storage capacity, and higher fault tolerance than the tradi-
tional first-order neural networks [35]. Recently, there has been

considerable attention in the literature on high-order Hopfield type
neural networks (see, e.g., [25,40–42] and the references therein). On
the other hand, due to the complicated dynamic properties of the
neural cells in the real world, the existing neural network models in
many cases cannot characterize the properties of a neural reaction
process precisely. It is natural and important that systems will
contain some information about the derivative of the past state to
further describe and model the dynamics for such complex neural
reactions [28]. However, the stability analysis of neural networks
of neutral-type has been investigated by only a few researchers
[10,23,27,28,46].

Markovian jump systems introduced by Krasovskii and Lidskii
[21] are the hybrid systems with two components in the state. The
first one refers to the model which is described by a continuous-
time finite-state Markovian process, and the second one refers to
the state which is represented by a system of differential equa-
tions. The jump systems have the advantage of modeling the
dynamic systems subject to abrupt variation in their structures,
such as component failures or repairs, sudden environmental
disturbance, changing subsystem interconnections, operating in
different points of a nonlinear plant [26]. It should be pointed out
that such a jump system has seldom been applied to neural
networks due to the difficulty of mathematics. However, in real
life, neural networks often exhibit information latching. It is
recognized that a way of dealing with this information latching
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problem is to extract finite-state representations (also called
modes or clusters). In fact, such a neural network with information
latching may have finite modes, and the modes may switch (or
jump) from one to another at different times, and the switching
(or jumping) between two arbitrarily different modes can be
governed by a Markov chain. Hence, the neural network with
Markovian jump parameters has been a subject of great signifi-
cance in modeling a class of neural networks with finite modes
[48]. Therefore, neural networks with Markovian jump parameters
have received a great deal of attention. For instance, Balasubra-
maniam et al. [2] investigated state estimation problem for a class
of neural networks with Markovian jumping parameters, Zhang
and Wang [44] discussed the problem of global asymptotical
stabilization for a class of Markovian jumping stochastic Cohen–
Grossberg neural networks with mixed delays including discrete
delays and distributed delays, Zhu and Cao [47] studied the
exponential stability problem for a class of Markovian jump
impulsive stochastic Cohen–Grossberg neural networks with
mixed time delays and known or unknown parameters, and so
on. For details concerning stability analysis of neural networks
with Markovian jump parameters, please see [3,4,6,24,49], and the
references cited therein.

In addition, noise disturbance is a major source of instability
and can lead to poor performances in neural networks. In real
nervous systems, the synaptic transmission is a noisy process
brought on by random fluctuations from the release of neuro-
transmitters and other probabilistic causes. It has also been known
that a neural network could be stabilized or destabilized by certain
stochastic inputs [7]. Hence, great attention has been paid on the
stability analysis for stochastic neural networks, and some initial
results have been obtained (see, e.g., [18,33,36,37,45] and the
references therein).

In addition to the noise disturbance, time delay is also a major
source for causing instability and poor performances in neural
networks (see, e.g., [1,5,8]). It is well-known that there exist time
delays in the information processing of neurons due to various
reasons. For example, time delays can be caused by the finite
switching speed of amplifier circuits in neural networks or
deliberately introduced to achieve tasks of dealing with motion-
related problems, such as moving image processing. Time delays in
the neural networks make the dynamic behaviors become more
complicated, and may destabilize the stable equilibria and admit
periodic oscillation, bifurcation and chaos. Therefore, considerable
attention has been paid on the study of delay systems in control
theory and a large body of work has been reported in the literature
(see, e.g., [7,22,30,36,37] and the references therein).

To the best of our knowledge, the global exponential stability
analysis problem for neutral high-order stochastic Hopfield neural
networks with Markovian jump parameters and mixed time delays
have not been studied thoroughly in the literature and it is very
important in both theories and applications, so there exists open
room for further improvement. This situation motivates our
present investigation. This paper is concerned with the global
exponential stability analysis problem for a class of neutral high-
order stochastic Hopfield neural networks with both Markovian
jump parameters and mixed time delays, which synchronously
comprise constant, time-varying, and distributed delays. By utiliz-
ing the Lyapunov stability theory, stochastic analysis theory, and
linear matrix inequality (LMI) technique, some novel delay-
dependent conditions are obtained, which guarantee the expo-
nential stability of the equilibrium point. The proposed LMI-based
criteria are computationally efficient as they can be easily checked
by using recently developed standard algorithms, such as interior-
point methods [8], in solving LMIs. Finally, numerical simulations
are provided to illustrate the effectiveness of the theoretical
results.

The organization of this paper is as follows: in Section 2, we
propose the relating notations, definitions and lemmas which
would be used later, moreover, the existence of equilibrium point
is proved; in Section 3, new delay-dependent global exponential
stability criteria will be established for neutral high-order stochas-
tic Hopfield neural networks with Markovian jump parameters
and mixed time delays to be globally exponentially stable in the
mean square; numerical simulations will be given in Section 4 to
demonstrate the effectiveness of our results. Finally, conclusions
are drawn in Section 5.

Notation: Throughout this paper, Rn and Rn�m denote the n
dimensional Euclidean space and the set of all n�m real matrices,
respectively; the superscript “T” denotes matrix transposition and
the notation XZY (respectively, X4Y) where X and Y are
symmetric matrices, means that X�Y is semi-positive definite
(respectively, positive definite); λminð�Þ and λmaxð�Þ denote the
minimum and maximum eigenvalues of a real symmetric matrix,
respectively; In is the n�n identity matrix; the notation C2;1ðRþ �
Rn � S;RþÞ denotes the family of all nonnegative functions
Vðt; xðtÞ; iÞ on Rþ � Rn � S which are continuously twice differenti-
able in x and once differentiable in t; ðΩ;F ;PÞ is a complete
probability space, where Ω is the sample space, F is the s�algebra
of subsets of the sample space and P is the probability measure on
F ; L2F0

ð½�τ;0�;RnÞ denotes the family of all F 0-measurable
Cð½�τ;0�;RnÞ�valued random variables ξ¼ fξðθÞ : �τrθr0g such
that sup�τr θr0EjξðθÞj2o1, where Ef�g stands for the mathema-
tical expectation operator with respect to the given probability
measure P; the shorthand diagf⋯g denotes the block diagonal
matrix; j � j is the Euclidean norm in Rn; I is the identity matrix of
appropriate dimension; and the symmetric terms in asymmetric
matrix are denoted by n.

2. Problem formulation

In this paper, the neutral high-order stochastic Hopfield neural
networks with mixed time delays is described by the following
differential equation:

dyiðtÞ�ki dyiðt�hÞ ¼ �ciyiðtÞ þ ∑
n

j ¼ 1
aijgjðyjðtÞÞ þ ∑

n

j ¼ 1
bijgjðyjðt�τjðtÞÞÞ

(

þ ∑
n

j ¼ 1
∑
n

l ¼ 1
Tijlgjðyjðt�τjðtÞÞÞglðylðt�τlðtÞÞÞ

þ ∑
n

j ¼ 1
dij

Z t

t�τjðtÞ
gjðyjðsÞÞ dsþ Ji

)
dt

þρiðyiðtÞ; yiðt�τiðtÞÞ; tÞ dωiðtÞ; ð2:1Þ

where iAf1;2;…;ng, tZt0; yi(t) is the neural state of cell i at time
t; ci40 denotes the rate with which the cell i resets its potential to
the resting state; aij, bij and dij are the first-order synaptic weights
of the neural networks; Tijl is the second-order synaptic weights of
the neural networks; τjðtÞ ðj¼ 1;2;…;nÞ is the transmission delays
of the ith unit along the axon of the jth unit at time t such that
0oτjðtÞrτ and _τ jðtÞrϱo1, where τ and ϱ are constants; the
activation function gj is continuous on R; Ji is the external input. In
general, the current state of a neuron may depend on several
events having occurred in the neighboring neurons at different
times. Therefore, time delays can easily be introduced in the
neural network models by writing the first order interaction term
in the form ∑n

j ¼ 1∑
l
m ¼ 1Tijmgjðyjðt�τijmÞÞ, where m is an index that

refers to past synaptic events and τijmZ0. ki is the neutral delayed
strength of connectivity; h40 is a neutral constant delay; ρi is the
diffusion coefficient (or noise intensity) and the stochastic dis-
turbance ωðtÞ ¼ ½ω1ðtÞ;ω2ðtÞ;…;ωnðtÞ�T ARn is a Brownian motion
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