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a b s t r a c t

The flywheel inverted pendulum is an underactuated mechanical system with a nonlinear model but
admitting a linear approximation around the unstable equilibrium point in the upper position. Although
underactuated systems usually require nonlinear controllers, the easy tuning and understanding of linear
controllers make them more attractive for designers and final users. In a recent paper, a simple PID
controller was proposed by the authors, leading to an internally unstable controlled plant. To achieve
global stability, two options are developed here: first by introducing an internal stabilizing controller
and second by replacing the PID controller by an observer-based state feedback control. Simulation and
experimental results show the effectiveness of the design.

& 2013 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Underactuated mechanical systems received a lot of interest as
they appear in many practical applications such as robotic systems
(e.g. mobile robots, flexible-link robots, snake-type robots, and
walking robots), aerospace systems (e.g. aircraft, spacecraft, heli-
copters, rockets and satellites), or marine vehicles (e.g. surface
vessels and underwater vehicles). They are characterized by the
fact that there are more degrees of freedom than actuators, i.e.,
one or more degrees of freedom are unactuated [1] presenting
challenging control problems to solve operational inconveniences
with great interest from the theoretical point of view. Most of the
reported works on this kind of mechanical systems approach the
problem from a nonlinear perspective [2–5]. The linear approx-
imation around equilibrium points may not, in general, be con-
trollable and the feedback stabilization approach to transform the
plant into a linear one, in general, cannot be used. Therefore linear
control methods are not used to solve the feedback stabilization
problem, not even locally. In the same way, the tracking control
problem cannot be transformed into a linear control problem.

But linear control systems are very appealing by their simplicity
and easy tuning. The design procedure may have different steps
in order to consider different situations but, in any case, a clear
understanding of the design parameters is at hand. With this idea in
mind, in our previous paper [6], a PID controller was proposed to

control a flywheel inverted pendulum (FIP) [7]. Due to the under-
actuation, a derivative behavior appears at the plant output, so
the upper equilibrium position can be reached for any constant or
null input value, if the overall system is stable. The problem already
reported is that the PID solution is internally unstable.

The paper is organized as follows. First, to fix the problem, the
nonlinear model and its approximated linearization around the
unstable equilibrium point for this well-known mechanical device
are derived. Then, the design of a PID controller to stabilize the plant
and to compensate measurement disturbances is reviewed. Looking
at the FIP model, it presents an unstable open-loop pole and a zero
at the origin. So, even though the input/output behavior of the
controlled plant appears to be stable, its internal stability is not
achieved. To stabilize the internally unstable controlled plant, two
options are considered: first a new control loop is added, keeping
the global stability achieved by the initial design and allowing to
control the unstable internal variable. The second option is a state
feedback control, where cancelation is avoided. This results in a good
behavior but it requires full access to the state, thus a state
estimator/observer should be implemented. These results are
illustrated experimentally by the control of a laboratory prototype.
Some comments and future works are outlined in the last section,
where the improvements with respect to the previous paper are
discussed.

2. Flywheel inverted pendulum

A review on the control of underactuated systems can be found
in [1,8] (where the classical inverted pendulum mounted on a cart
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is used as a benchmark of underactuated system), as well as in
[9,10], where controllers have been designed by using linearization-
based or energy-based methods.

Among the different approaches to control the FIP, a swinging-
up control at the unstable equilibrium point, without flywheel
angular velocity control, has been reported [11,12], a fuzzy control
is reported in [13] and a linear full space state control design
using pole assignment has been deeply studied in [14]. As already
mentioned, a PID simple solution was proposed in [6].

2.1. The model

A FIP consists of an inverted pendulum pivoting on a friction-
less point with a rotating mass on the top. It is an abstraction of
a biped robot, with an articulated/motorized joint, where the leg
is represented by a bar and the moving body is abstracted as
a rotating motor. The reaction torque generated by this rotation
allows moving forward/backward the upper part of the pendulum.
A local sensor placed at the bottom of the pendulum provides
a measurement of its inclination. A picture of such a device [7] is
shown in Fig. 1(a) and a schematic diagram of the pendulum is
depicted in Fig. 1(b).

A DC motor controlled by the armature voltage is moving
the inertia wheel. The main parameters to be considered are the
armature resistance (R) and the inductance (L), as well as the
torque constant (M).

2.1.1. Lagrangian formulation
Defining by fmp; Ip;ϕg the pendulum mass, its moment of

inertia with respect to the base and its angular position with
respect to the vertical axis, respectively; and by fmw; Iw;θg the
flywheel mass, its moment of inertia with respect to its center of
mass and its rotation angle, respectively.

The Lagrangian is defined by (1), where E, V denote the kinetic
and potential energies, respectively, and q is the generalized
coordinates vector of the system, q¼ ½ϕ θ�T .
Lðq; _qÞ ¼ Eðq; _qÞ�Vðq; _qÞ ð1Þ

The system dynamics is derived from the Euler–Lagrange
equation (2), where R is the Rayleigh0s dissipative function and τi
are the moments applied to each coordinate (pendulum bar and

flywheel)

d
dt

∂L
∂ _qi

� �
� ∂L
∂qi

þ ∂R
∂ _qi

¼ τi; i¼ϕ;θ ð2Þ

The total kinetic energy can be easily expressed as

Eðq; _qÞ ¼ 1
2 ½Ip _ϕ

2þ Iw _θ
2þmwL

2
p
_ϕ
2� ð3Þ

where Ip and Iw are the inertia moments of the pendulum bar with
respect to the fulcrum and the flywheel with respect to its rotation
axis, respectively, and Lp is the pendulum length (from the flywheel
axis to the fulcrum).

The potential energy is given by

Vðq; _qÞ ¼mpgLc cos ϕþmwgLp cos ϕ ð4Þ
where Lc is the pendulum mass center distance to the fulcrum.

Thence, altogether, the Lagrangian is given by

Lðq; _qÞ ¼ 1
2α1

_ϕ
2þ1

2 Iw
_θ
2�α2 cos ϕ

α1 ¼mwL
2
pþ Ip

α2 ¼ ðmpLcþmwLpÞg ð5Þ
If (2) is applied, taking into account that the generalized moment
of the system and the dissipative moments are given by (6), where
ηϕ and ηθ are the friction factors and τ is the external torque
applied to the flywheel,

τϕ ¼ � Iw €θ ;
∂R
∂ _qϕ

¼ ηϕ
_ϕ

τθ ¼ τ� Iw €ϕ;
∂R
∂ _qθ

¼ ηθ
_θ ð6Þ

then the nonlinear model of the FIP is expressed by the coupled
equations:

α1
€ϕþ Iw €θ ¼ α2 sin ϕ�ηϕ

_ϕ ð7Þ

Iwð €ϕþ €θÞ ¼ τ�ηθ
_θ ð8Þ

The input torque τ¼Mia generated by the electric motor, where ia
is the armature current, is obtained from the differential equation
of the armature electric circuit:

va ¼ RaiaþLa
dia
dt

þvr ð9Þ

Fig. 1. Flywheel inverted pendulum. (a) Physical device and (b) schematic representation.
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