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a b s t r a c t

This work presents an automatic tuning method for the discontinuous component of the Sliding Mode
Generalized Predictive Controller (SMGPC) subject to constraints. The strategy employs Particle Swarm
Optimization (PSO) to minimize a second aggregated cost function. The continuous component is
obtained by the standard procedure, by Quadratic Programming (QP), thus yielding an online dual
optimization scheme. Simulations and performance indexes for common process models in industry,
such as nonminimum phase and time delayed systems, result in a better performance, improving
robustness and tracking accuracy.

& 2014 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Controllers play a central role in industrial plants, since they are
designed to regulate process variables in accordance with some
performance criteria. A low energy consumption is also of practical
interest, thus arising the well known trade-off: tracking or regula-
tion accuracy versus energy consumption. To cope with these
issues, controller parameters must be appropriately adjusted and
research in this subject keeps its relevance since the work by [1],
regarding Proportional Integral Derivative (PID) controller. This
tuning method allows getting an easier initial set for PID para-
meters. When some intelligence is incorporated into the closed
loop, one has an online or automatic tuning method [2]. Meta-
heuristic algorithms, such as Particle Swarm Optimization (PSO)
are quite feasible in such cases. PSO is a natural inspired computa-
tion technique introduced by [3] and it is characterized for its
simplicity and high efficiency in searching global optimal solutions
in problem spaces. This feature attracted the attention of control

engineers in the sense of a simple way of searching optimal or
semi-optimal tuning of controller's parameters [4].

Besides PID, known for its simplicity due to just three para-
meters to tune, Model Predictive Controllers (MPC) are interesting
for linear, nonlinear, time-delayed and nonminimum phase sys-
tems [5]. It offers a straightforward design method to anticipate
future control actions within some time horizon (control horizon),
in order to track a future behavior (in some prediction horizon),
predicted by an explicit model. The most common model forms in
the various MPC products rely on convolution (Finite Step
Response FSR and Finite Impulse Response FIR) models, such as
Dynamic Matrix Control (DMC), but recent controllers suggest a
trend toward state space formulations which provides flexibility in
representing stable, unstable, integrating and unmeasured distur-
bances, just as the Controller Auto-Regressive Integrated Moving-
Average (CARIMA) model in the Generalized Predictive Control
(GPC) [6,7]. According to [8,9], the objective function of GPC is very
similar to that of DMC, with the fundamental difference of using a
Diophantine equation and CARIMA model to formulate the
dynamic matrix. Abu-Ayyad and Dubay [7] showed that GPC and
Extended Predictive Control (EPC) can handle the system matrix
ill-conditionality better than other MPC methods and, therefore, it
still motivates the development and applications of GPC, as in [6].
The direct treatment of practical constraints such as actuator and
output limits is carried out by the minimization or maximization
of some objectives, expressed in its simpler form as an aggregated
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quadratic cost function. For this optimization scenario, Quadratic
Programming (QP) based on active-set algorithm is usual and PSO
can be also applied to tune its parameters, as proposed by [10–13].
Considering its wide application in environments subject to
disturbances, robustness is a necessary feature and must be taken
into account. An attempt to aggregate robustness into GPC by
combining GPC with Sliding Mode Control (SMC) was firstly
reported in [14].

SMC is a nonlinear control scheme known to be robust to model
uncertainties, disturbances and unmodeled dynamics, being quite
suitable for industrial environments. Since the considerations by [15],
the research on SMC theory and its applications have been of
increasing interest, providing an engineering look at SMC. Key
aspects were clarified, such as the chattering phenomena, both in
continuous and discrete time. The key idea consists in choosing a
state variables function (sliding surface) inwhich all trajectories must
reach in finite time (reaching phase) and, once reached, cannot
escape, sliding to the desired final value (sliding phase). A control law
is then designed to force the trajectories towards this surface
(corrective action) and, moreover, to keep them thereafter (equiva-
lent control [16]). This control law must be discontinuous or, at least,
it must contain a discontinuous component. In classical SMC, a
possibility is for instance the tuning of sliding surface parameters,
as obtained by [17,18]. A GPC based on PSO was compared with the
traditional QP-based GPC in a greenhouse experiment, giving better
results without great increase of computational burden [19].

The well succeeded melting of Sliding Mode Predictive Con-
trollers (SMPC) motivated other works and applications [20–30].
Most of the work referenced is concerned with common process
control problems, such as delayed and nonminimum phase sys-
tems, often represented by a First Order Plus Dead Time (FOPDT)
transfer function. For this type of continuous-time models, Cama-
cho and Smith [20] proposed a set of tuning equations for the
initial values of the discontinuous component of the control law,
as a function of the characteristic parameters of the FOPDT model.
When other model structures are considered, including discrete
and higher order systems, these equations are no longer valid and
computational intelligent approaches are interesting in order to
help online tuning of the controller. In [6] it is stated that, for the
MPC controllers used in process industries today, the tuning
emphasis is on disturbance rejection and suggest as trends and
research directions the development of improved disturbance
estimators and robust controllers, by means of randomized algo-
rithms which would rely on extensive offline simulation. Tuning is
therefore commonly based on offline simulation and the actual
performance of the online controller. It is typically carried out
using the nominal model and via trial and error try do determine
steady state behavior, providing initial tuning values for the
parameters. Such simulations need to consider expected model
errors and incorporate the characteristics of unmeasured (stochas-
tic) disturbances obtained, for instance, from the actual controller.
In this sense, a tuning strategy incorporated into the control loop
can provide adaptability and robustness, without significant
increase of the computational load, considering the hardware
technology currently available. In [2], it also corroborates that
while tuning guidelines for initial tuning values may be found in
the literature, these rules are not general and do not learn from the
controller operation and system response.

Following some design steps of the SMPC presented in [27],
here named Sliding Mode Generalized Predictive Controller
(SMGPC), this paper keeps QP active-set for the optimization of
the continuous component of the control law responsible for the
sliding phase, but proposes PSO as an optimization tool for selecting
optimal parameters for the discontinuous component of the control
law, thus yielding a dual optimization scheme (henceforth named
Dual-SMGPC), applicable to a wider class of systems. Moreover, now

its parameters are adaptive, providing robustness during reaching
phase. In order to test the way PSO can find the optimum solutions,
besides the common approach of getting the results from the initial
population, two other variations are compared: restarting the
population after some iterations while keeping a member in the
next population, and a totally random new population after restart-
ing, to avoid possible local minimum. In traditional SMGPC, these
parameters are kept constant and calculated offline, normally
through simulations. Simulations on common process models will
be presented and the results compared with SMGPC without PSO,
with a fixed pair ðKd; δÞ. The remaining of this paper is organized as
follows: Section 2 states the GPC and both optimization problems
(QP and PSO), discussing adjustments criteria; Section 3 presents and
comment simulations results; Section 4 provides some conclusions
and encourage future works.

2. Controller design

The SMGPC presented here is based on a Controller Auto-
Regressive Integrated Moving-Average model (CARIMA), consid-
ered linear around each operating point and described as

ΔAðq�1ÞyðkÞ ¼ Bðq�1ÞΔuðk�d�1ÞþξðkÞ; ð1Þ

where d is the delay from input to output (here considered as a
multiple of the sampling time), u is the input signal, q�1 is the
backward-shift operator, Δ : 1�q�1 and ξ is the zero mean white
noise. A and B are polynomials in q�1 defined as

Aðq�1Þ ¼ 1þa1q�1þa2q�2þ…þanaq�na; ð2Þ

Bðq�1Þ ¼ b0þb1q�1þb2q�2þ…þanbq
�nb: ð3Þ

According to the SMC theory [16], the first step to design the
controller is to define a sliding surface, S(t), along which the
process can slide to find its desired final value. Very often, S(t) is
chosen in such a way that represents a desired system dynamics
and/or control objective. For instance, S(t) could be the tracking
error eo ¼ y�w, with w being some reference signal. The problem
of tracking a reference value can be reduced to keeping S(t) at zero.
From [25,27], the j-step ahead prediction of S(k) with information
until the actual instant t¼k is given by

Ŝðkþ jÞ ¼ Psðq�1Þðŷðkþ jÞ�wðkþ jÞÞþQsðq�1ÞΔuðkþ j�1�dÞ: ð4Þ

Polynomials Psðq�1Þ, Qsðq�1Þ have degree np and nq respectively,
and allow to design the desired dynamics in the sliding condition.

A common adjustment is choosing Psðq�1Þ and Qsðq�1Þ as a
first order system:

Qsðq�1Þ
Psðq�1Þ ¼

ð1�αÞq�1

1�αq�1 ; ð5Þ

with 0oαr1, since all roots of Psðq�1Þ must be inside the unit
circle [27]. As α-0 the dynamic is faster.

The cost function aggregates two simultaneous objectives:

JC ¼ ∑
Ny

j ¼ N1

½Ŝðkþ jÞ�2þ ∑
Nu

j ¼ 1
λ½Δuðkþ j�1Þ�2 ð6Þ

where λ is set constant and N1�Ny is the period of time in which
one desires the output tracks the reference signal and Nu is
the control horizon. For these parameters, [27] suggested some
intuitive relations, which can be used as initial values. Other online
tuning strategies for these specific parameters are available in the
literature [2].

J.B. Oliveira et al. / ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: Oliveira JB, et al. A swarm intelligence-based tuning method for the sliding mode generalized
predictive control. ISA Transactions (2014), http://dx.doi.org/10.1016/j.isatra.2014.06.007i

http://dx.doi.org/10.1016/j.isatra.2014.06.007
http://dx.doi.org/10.1016/j.isatra.2014.06.007
http://dx.doi.org/10.1016/j.isatra.2014.06.007


Download English Version:

https://daneshyari.com/en/article/5004715

Download Persian Version:

https://daneshyari.com/article/5004715

Daneshyari.com

https://daneshyari.com/en/article/5004715
https://daneshyari.com/article/5004715
https://daneshyari.com

